Uradni list

Številka 66
Uradni list RS, št. 66/2005 z dne 13. 7. 2005
Uradni list

Uradni list RS, št. 66/2005 z dne 13. 7. 2005


33. Zakon o ratifikaciji Protokola o obstojnih organskih onesnaževalih h Konvenciji iz leta 1979 o onesnaževanju zraka na velike razdalje preko meja (MPOKOZ), stran 780.

Na podlagi druge alinee prvega odstavka 107. člena in prvega odstavka 91. člena Ustave Republike Slovenije izdajam
Razglašam Zakon o ratifikaciji Protokola o obstojnih organskih onesnaževalih h Konvenciji iz leta 1979 o onesnaževanju zraka na velike razdalje preko meja (MPOKOZ), ki ga je sprejel Državni zbor Republike Slovenije na seji 21. junija 2005.
Št. 001-22-47/05
Ljubljana, 29. junija 2005
Dr. Janez Drnovšek l.r.
Republike Slovenije
Ratificira se Protokol o obstojnih organskih onesnaževalih h Konvenciji iz leta 1979 o onesnaževanju zraka na velike razdalje preko meja, sestavljen v Aarhusu (Danska) 24. junija 1998.
Besedilo protokola se v izvirniku v angleškem jeziku ter prevodu v slovenskem jeziku glasi:
The Parties,
Determined to implement the Convention on Long-range Transboundary Air Pollution,
Recognizing that emissions of many persistent organic pollutants are transported across international boundaries and are deposited in Europe, North America and the Arctic, far from their site of origin, and that the atmosphere is the dominant medium of transport,
Aware that persistent organic pollutants resist degradation under natural conditions and have been associated with adverse effects on human health and the environment,
Concerned that persistent organic pollutants can biomagnify in upper trophic levels to concentrations which might affect the health of exposed wildlife and humans,
Acknowledging that the Arctic ecosystems and especially its indigenous people, who subsist on Arctic fish and mammals, are particularly at risk because of the biomagnification of persistent organic pollutants,
Mindful that measures to control emissions of persistent organic pollutants would also contribute to the protection of the environment and human health in areas outside the United Nations Economic Commission for Europe's region, including the Arctic and international waters,
Resolved to take measures to anticipate, prevent or minimize emissions of persistent organic pollutants, taking into account the application of the precautionary approach, as set forth in principle 15 of the Rio Declaration on Environment and Development,
Reaffirming that States have, in accordance with the Charter of the United Nations and the principles of international law, the sovereign right to exploit their own resources pursuant to their own environmental and development policies, and the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or of areas beyond the limits of national jurisdiction,
Noting the need for global action on persistent organic pollutants and recalling the role envisaged in chapter 9 of Agenda 21 for regional agreements to reduce global transboundary air pollution and, in particular, for the United Nations Economic Commission for Europe to share its regional experience with other regions of the world,
Recognizing that there are subregional, regional and global regimes in place, including international instruments governing the management of hazardous wastes, their transboundary movement and disposal, in particular the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal,
Considering that the predominant sources of air pollution contributing to the accumulation of persistent organic pollutants are the use of certain pesticides, the manufacture and use of certain chemicals, and the unintentional formation of certain substances in waste incineration, combustion, metal production and mobile sources,
Aware that techniques and management practices are available to reduce emissions of persistent organic pollutants into the air,
Conscious of the need for a cost-effective regional approach to combating air pollution,
Noting the important contribution of the private and non-governmental sectors to knowledge of the effects associated with persistent organic pollutants, available alternatives and abatement techniques, and their role in assisting in the reduction of emissions of persistent organic pollutants,
Bearing in mind that measures taken to reduce persistent organic pollutant emissions should not constitute a means of arbitrary or unjustifiable discrimination or a disguised restriction on international competition and trade,
Taking into consideration existing scientific and technical data on emissions, atmospheric processes and effects on human health and the environment of persistent organic pollutants, as well as on abatement costs, and acknowledging the need to continue scientific and technical cooperation to further the understanding of these issues,
Recognizing the measures on persistent organic pollutants already taken by some of the Parties on a national level and/or under other international conventions,
Have agreed as follows:
Article 1
For the purposes of the present Protocol,
1. "Convention" means the Convention on Long-range Transboundary Air Pollution, adopted in Geneva on 13 November 1979;
2. "EMEP" means the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe;
3. "Executive Body" means the Executive Body for the Convention constituted under article 10, paragraph 1, of the Convention;
4. "Commission" means the United Nations Economic Commission for Europe;
5. "Parties" means, unless the context otherwise requires, the Parties to the present Protocol;
6. "Geographical scope of EMEP" means the area defined in article 1, paragraph 4, of the Protocol to the 1979 Convention on Long-range Transboundary Air Pollution on Long-term Financing of the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP), adopted in Geneva on 28 September 1984;
7. "Persistent organic pollutants" (POPs) are organic substances that: (i) possess toxic characteristics; (ii) are persistent; (iii) bioaccumulate; (iv) are prone to long-range transboundary atmospheric transport and deposition; and (v) are likely to cause significant adverse human health or environmental effects near to and distant from their sources;
8. "Substance" means a single chemical species, or a number of chemical species which form a specific group by virtue of (a) having similar properties and being emitted together into the environment; or (b) forming a mixture normally marketed as a single article;
9. "Emission" means the release of a substance from a point or diffuse source into the atmosphere;
10. "Stationary source" means any fixed building, structure, facility, installation, or equipment that emits or may emit any persistent organic pollutant directly or indirectly into the atmosphere;
11. "Major stationary source category" means any stationary source category listed in annex VIII;
12. "New stationary source" means any stationary source of which the construction or substantial modification is commenced after the expiry of two years from the date of entry into force of: (i) this Protocol; or (ii) an amendment to annex III or VIII, where the stationary source becomes subject to the provisions of this Protocol only by virtue of that amendment. It shall be a matter for the competent national authorities to decide whether a modification is substantial or not, taking into account such factors as the environmental benefits of the modification.
Article 2
The objective of the present Protocol is to control, reduce or eliminate discharges, emissions and losses of persistent organic pollutants.
Article 3
1. Except where specifically exempted in accordance with article 4, each Party shall take effective measures:
(a) To eliminate the production and use of the substances listed in annex I in accordance with the implementation requirements specified therein;
(b) (i) To ensure that, when the substances listed in annex I are destroyed or disposed of, such destruction or disposal is undertaken in an environmentally sound manner, taking into account relevant subregional, regional and global regimes governing the management of hazardous wastes and their disposal, in particular the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal;
(ii) To endeavour to ensure that the disposal of substances listed in annex I is carried out domestically, taking into account pertinent environmental considerations;
(iii) To ensure that the transboundary movement of the substances listed in annex I is conducted in an environmentally sound manner, taking into consideration applicable subregional, regional, and global regimes governing the transboundary movement of hazardous wastes, in particular the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal;
(c) To restrict the substances listed in annex II to the uses described, in accordance with the implementation requirements specified therein.
2. The requirements specified in paragraph 1 (b) above shall become effective for each substance upon the date that production or use of that substance is eliminated, whichever is later.
3. For substances listed in annex I, II, or III, each Party should develop appropriate strategies for identifying articles still in use and wastes containing such substances, and shall take appropriate measures to ensure that such wastes and such articles, upon becoming wastes, are destroyed or disposed of in an environmentally sound manner.
4. For the purposes of paragraphs 1 to 3 above, the terms waste, disposal, and environmentally sound shall be interpreted in a manner consistent with the use of those terms under the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal.
5. Each Party shall:
(a) Reduce its total annual emissions of each of the substances listed in annex III from the level of the emission in a reference year set in accordance with that annex by taking effective measures, appropriate in its particular circumstances;
(b) No later than the timescales specified in annex VI, apply:
(i) The best available techniques, taking into consideration annex V, to each new stationary source within a major stationary source category for which annex V identifies best available techniques;
(ii) Limit values at least as stringent as those specified in annex IV to each new stationary source within a category mentioned in that annex, taking into consideration annex V. A Party may, as an alternative, apply different emission reduction strategies that achieve equivalent overall emission levels;
(iii) The best available techniques, taking into consideration annex V, to each existing stationary source within a major stationary source category for which annex V identifies best available techniques, insofar as this is technically and economically feasible. A Party may, as an alternative, apply different emission reduction strategies that achieve equivalent overall emission reductions;
(iv) Limit values at least as stringent as those specified in annex IV to each existing stationary source within a category mentioned in that annex, insofar as this is technically and economically feasible, taking into consideration annex V. A Party may, as an alternative, apply different emission reduction strategies that achieve equivalent overall emission reductions;
(v) Effective measures to control emissions from mobile sources, taking into consideration annex VII.
6. In the case of residential combustion sources, the obligations set out in paragraph 5 (b) (i) and (iii) above shall refer to all stationary sources in that category taken together.
7. Where a Party, after the application of paragraph 5 (b) above, cannot achieve the requirements of paragraph 5 (a) above for a substance specified in annex III, it shall be exempted from its obligations in paragraph 5 (a) above for that substance.
8. Each Party shall develop and maintain emission inventories for the substances listed in annex III, and shall collect available information relating to the production and sales of the substances listed in annexes I and II, for those Parties within the geographical scope of EMEP, using, as a minimum, the methodologies and the spatial and temporal resolution specified by the Steering Body of EMEP, and, for those Parties outside the geographical scope of EMEP, using as guidance the methodologies developed through the work plan of the Executive Body. It shall report this information in accordance with the reporting requirements set out in article 9 below.
Article 4
1. Article 3, paragraph 1, shall not apply to quantities of a substance to be used for laboratory-scale research or as a reference standard.
2. A Party may grant an exemption from article 3, paragraphs 1 (a) and (c), in respect of a particular substance, provided that the exemption is not granted or used in a manner that would undermine the objectives of the present Protocol, and only for the following purposes and under the following conditions:
(a) For research other than that referred to in paragraph 1 above, if:
(i) No significant quantity of the substance is expected to reach the environment during the proposed use and subsequent disposal;
(ii) The objectives and parameters of such research are subject to assessment and authorization by the Party; and
(iii) In the event of a significant release of a substance into the environment, the exemption will terminate immediately, measures will be taken to mitigate the release as appropriate, and an assessment of the containment measures will be conducted before research may resume;
(b) To manage as necessary a public health emergency, if:
(i) No suitable alternative measures are available to the Party to address the situation;
(ii) The measures taken are proportional to the magnitude and severity of the emergency;
(iii) Appropriate precautions are taken to protect human health and the environment and to ensure that the substance is not used outside the geographical area subject to the emergency;
(iv) The exemption is granted for a period of time that does not exceed the duration of the emergency; and
(v) Upon termination of the emergency, any remaining stocks of the substance are subject to the provisions of article 3, paragraph 1 (b);
(c) For a minor application judged to be essential by the Party, if:
(i) The exemption is granted for a maximum of five years;
(ii) The exemption has not previously been granted by it under this article;
(iii) No suitable alternatives exist for the proposed use;
(iv) The Party has estimated the emissions of the substance resulting from the exemption and their contribution to the total emissions of the substance from the Parties;
(v) Adequate precautions are taken to ensure that the emissions to the environment are minimized; and
(vi) Upon termination of the exemption, any remaining stocks of the substance are subject to the provisions of article 3, paragraph 1 (b).
3. Each Party shall, no later than ninety days after granting an exemption under paragraph 2 above, provide the secretariat with, as a minimum, the following information:
(a) The chemical name of the substance subject to the exemption;
(b) The purpose for which the exemption has been granted;
(c) The conditions under which the exemption has been granted;
(d) The length of time for which the exemption has been granted;
(e) Those to whom, or the organization to which, the exemption applies; and
(f) For an exemption granted under paragraphs 2 (a) and (c) above, the estimated emissions of the substance as a result of the exemption and an assessment of their contribution to the total emissions of the substance from the Parties.
4. The secretariat shall make available to all Parties the information received under paragraph 3 above.
Article 5
The Parties shall, in a manner consistent with their laws, regulations and practices, create favourable conditions to facilitate the exchange of information and technology designed to reduce the generation and emission of persistent organic pollutants and to develop cost-effective alternatives, by promoting, inter alia:
(a) Contacts and cooperation among appropriate organizations and individuals in the private and public sectors that are capable of providing technology, design and engineering services, equipment or finance;
(b) The exchange of and access to information on the development and use of alternatives to persistent organic pollutants as well as on the evaluation of the risks that such alternatives pose to human health and the environment, and information on the economic and social costs of such alternatives;
(c) The compilation and regular updating of lists of their designated authorities engaged in similar activities in other international forums;
(d) The exchange of information on activities conducted in other international forums.
Article 6
The Parties shall, consistent with their laws, regulations and practices, promote the provision of information to the general public, including individuals who are direct users of persistent organic pollutants. This information may include, inter alia:
(a) Information, including labelling, on risk assessment and hazard;
(b) Information on risk reduction;
(c) Information to encourage the elimination of persistent organic pollutants or a reduction in their use, including, where appropriate, information on integrated pest management, integrated crop management and the economic and social impacts of this elimination or reduction; and
(d) Information on alternatives to persistent organic pollutants, as well as an evaluation of the risks that such alternatives pose to human health and the environment, and information on the economic and social impacts of such alternatives.
Article 7
1. Each Party shall, no later than six months after the date on which this Protocol enters into force for it, develop strategies, policies and programmes in order to discharge its obligations under the present Protocol.
2. Each Party shall:
(a) Encourage the use of economically feasible, environmentally sound management techniques, including best environmental practices, with respect to all aspects of the use, production, release, processing, distribution, handling, transport and reprocessing of substances subject to the present Protocol and manufactured articles, mixtures or solutions containing such substances;
(b) Encourage the implementation of other management programmes to reduce emissions of persistent organic pollutants, including voluntary programmes and the use of economic instruments;
(c) Consider the adoption of additional policies and measures as appropriate in its particular circumstances, which may include non-regulatory approaches;
(d) Make determined efforts that are economically feasible to reduce levels of substances subject to the present Protocol that are contained as contaminants in other substances, chemical products or manufactured articles, as soon as the relevance of the source has been established;
(e) Take into consideration in its programmes for evaluating substances, the characteristics specified in paragraph 1 of Executive Body decision 1998/2 on information to be submitted and procedures for adding substances to annex I, II or III, including any amendments thereto.
3. The Parties may take more stringent measures than those required by the present Protocol.
Article 8
The Parties shall encourage research, development, monitoring and cooperation related, but not limited, to:
(a) Emissions, long-range transport and deposition levels and their modelling, existing levels in the biotic and abiotic environment, the elaboration of procedures for harmonizing relevant methodologies;
(b) Pollutant pathways and inventories in representative ecosystems;
(c) Relevant effects on human health and the environment, including quantification of those effects;
(d) Best available techniques and practices, including agricultural practices, and emission control techniques and practices currently employed by the Parties or under development;
(e) Methodologies permitting consideration of socio-economic factors in the evaluation of alternative control strategies;
(f) An effects-based approach which integrates appropriate information, including information obtained under subparagraphs (a) to (e) above, on measured or modelled environmental levels, pathways, and effects on human health and the environment, for the purpose of formulating future control strategies which also take into account economic and technological factors;
(g) Methods for estimating national emissions and projecting future emissions of individual persistent organic pollutants and for evaluating how such estimates and projections can be used to structure future obligations;
(h) Levels of substances subject to the present Protocol that are contained as contaminants in other substances, chemical products or manufactured articles and the significance of these levels for long-range transport, as well as techniques to reduce levels of these contaminants, and, in addition, levels of persistent organic pollutants generated during the life cycle of timber treated with pentachlorophenol.
Priority should be given to research on substances considered to be the most likely to be submitted under the procedures specified in article 14, paragraph 6.
Article 9
1. Subject to its laws governing the confidentiality of commercial information:
(a) Each Party shall report, through the Executive Secretary of the Commission, to the Executive Body, on a periodic basis as determined by the Parties meeting within the Executive Body, information on the measures that it has taken to implement the present Protocol;
(b) Each Party within the geographical scope of EMEP shall report, through the Executive Secretary of the Commission, to EMEP, on a periodic basis to be determined by the Steering Body of EMEP and approved by the Parties at a session of the Executive Body, information on the levels of emissions of persistent organic pollutants using, as a minimum, the methodologies and the temporal and spatial resolution specified by the Steering Body of EMEP. Parties in areas outside the geographical scope of EMEP shall make available similar information to the Executive Body if requested to do so. Each Party shall also provide information on the levels of emissions of the substances listed in annex III for the reference year specified in that annex.
2. The information to be reported in accordance with paragraph 1 (a) above shall be in conformity with a decision regarding format and content to be adopted by the Parties at a session of the Executive Body. The terms of this decision shall be reviewed as necessary to identify any additional elements regarding the format or the content of the information that is to be included in the reports.
3. In good time before each annual session of the Executive Body, EMEP shall provide information on the long-range transport and deposition of persistent organic pollutants.
Article 10
1. The Parties shall, at sessions of the Executive Body, pursuant to article 10, paragraph 2 (a), of the Convention, review the information supplied by the Parties, EMEP and other subsidiary bodies, and the reports of the Implementation Committee referred to in article 11 of the present Protocol.
2. The Parties shall, at sessions of the Executive Body, keep under review the progress made towards achieving the obligations set out in the present Protocol.
3. The Parties shall, at sessions of the Executive Body, review the sufficiency and effectiveness of the obligations set out in the present Protocol. Such reviews will take into account the best available scientific information on the effects of the deposition of persistent organic pollutants, assessments of technological developments, changing economic conditions and the fulfilment of the obligations on emission levels. The procedures, methods and timing for such reviews shall be specified by the Parties at a session of the Executive Body. The first such review shall be completed no later than three years after the present Protocol enters into force.
Article 11
Compliance by each Party with its obligations under the present Protocol shall be reviewed regularly. The Implementation Committee established by decision 1997/2 of the Executive Body at its fifteenth session shall carry out such reviews and report to the Parties meeting within the Executive Body in accordance with the terms of the annex to that decision, including any amendments thereto.
Article 12
1. In the event of a dispute between any two or more Parties concerning the interpretation or application of the present Protocol, the Parties concerned shall seek a settlement of the dispute through negotiation or any other peaceful means of their own choice. The parties to the dispute shall inform the Executive Body of their dispute.
2. When ratifying, accepting, approving or acceding to the present Protocol, or at anytime thereafter, a Party which is not a regional economic integration organization may declare in a written instrument submitted to the Depositary that, in respect of any dispute concerning the interpretation or application of the Protocol, it recognizes one or both of the following means of dispute settlement as compulsory ipso facto and without special agreement, in relation to any Party accepting the same obligation:
(a) Submission of the dispute to the International Court of Justice;
(b) Arbitration in accordance with procedures to be adopted by the Parties at a session of the Executive Body, as soon as practicable, in an annex on arbitration.
A Party which is a regional economic integration organization may make a declaration with like effect in relation to arbitration in accordance with the procedures referred to in subparagraph (b) above.
3. A declaration made under paragraph 2 above shall remain in force until it expires in accordance with its terms or until three months after written notice of its revocation has been deposited with the Depositary.
4. A new declaration, a notice of revocation or the expiry of a declaration shall not in any way affect proceedings pending before the International Court of Justice or the arbitral tribunal, unless the parties to the dispute agree otherwise.
5. Except in a case where the parties to a dispute have accepted the same means of dispute settlement under paragraph 2, if after twelve months following notification by one Party to another that a dispute exists between them, the Parties concerned have not been able to settle their dispute through the means mentioned in paragraph 1 above, the dispute shall be submitted, at the request of any of the parties to the dispute, to conciliation.
6. For the purpose of paragraph 5, a conciliation commission shall be created. The commission shall be composed of equal numbers of members appointed by each Party concerned or, where the Parties in conciliation share the same interest, by the group sharing that interest, and a chairperson chosen jointly by the members so appointed. The commission shall render a recommendatory award, which the Parties shall consider in good faith.
Article 13
The annexes to the present Protocol shall form an integral part of the Protocol. Annexes V and VII are recommendatory in character.
Article 14
1. Any Party may propose amendments to the present Protocol.
2. Proposed amendments shall be submitted in writing to the Executive Secretary of the Commission, who shall communicate them to all Parties. The Parties meeting within the Executive Body shall discuss the proposed amendments at its next session, provided that the proposals have been circulated by the Executive Secretary to the Parties at least ninety days in advance.
3. Amendments to the present Protocol and to annexes I to IV, VI and VIII shall be adopted by consensus of the Parties present at a session of the Executive Body, and shall enter into force for the Parties which have accepted them on the ninetieth day after the date on which two thirds of the Parties have deposited with the Depositary their instruments of acceptance thereof. Amendments shall enter into force for any other Party on the ninetieth day after the date on which that Party has deposited its instrument of acceptance thereof.
4. Amendments to annexes V and VII shall be adopted by consensus of the Parties present at a session of the Executive Body. On the expiry of ninety days from the date of its communication to all Parties by the Executive Secretary of the Commission, an amendment to any such annex shall become effective for those Parties which have not submitted to the Depositary a notification in accordance with the provisions of paragraph 5 below, provided that at least sixteen Parties have not submitted such a notification.
5. Any Party that is unable to approve an amendment to annex V or VII shall so notify the Depositary in writing within ninety days from the date of the communication of its adoption. The Depositary shall without delay notify all Parties of any such notification received. A Party may at any time substitute an acceptance for its previous notification and, upon deposit of an instrument of acceptance with the Depositary, the amendment to such an annex shall become effective for that Party.
6. In the case of a proposal to amend annex I, II, or III by adding a substance to the present Protocol:
(a) The proposer shall provide the Executive Body with the information specified in Executive Body decision 1998/2, including any amendments thereto; and
(b) The Parties shall evaluate the proposal in accordance with the procedures set forth in Executive Body decision 1998/2, including any amendments thereto.
7. Any decision to amend Executive Body decision 1998/2 shall be taken by consensus of the Parties meeting within the Executive Body and shall take effect sixty days after the date of adoption.
Article 15
1. The present Protocol shall be open for signature at Aarhus (Denmark) from 24 to 25 June 1998, then at United Nations Headquarters in New York until 21 December 1998, by States members of the Commission as well as States having consultative status with the Commission pursuant to paragraph 8 of Economic and Social Council resolution 36 (IV) of 28 March 1947, and by regional economic integration organizations, constituted by sovereign States members of the Commission, which have competence in respect of the negotiation, conclusion and application of international agreements in matters covered by the Protocol, provided that the States and organizations concerned are Parties to the Convention.
2. In matters within their competence, such regional economic integration organizations shall, on their own behalf, exercise the rights and fulfil the responsibilities which the present Protocol attributes to their member States. In such cases, the member States of these organizations shall not be entitled to exercise such rights individually.
Article 16
1. The present Protocol shall be subject to ratification, acceptance or approval by Signatories.
2. The present Protocol shall be open for accession as from 21 December 1998 by the States and organizations that meet the requirements of article 15, paragraph 1.
Article 17
The instruments of ratification, acceptance, approval or accession shall be deposited with the Secretary-General of the United Nations, who will perform the functions of Depositary.
Article 18
1. The present Protocol shall enter into force on the ninetieth day following the date on which the sixteenth instrument of ratification, acceptance, approval or accession has been deposited with the Depositary.
2. For each State and organization referred to in article 15, paragraph 1, which ratifies, accepts or approves the present Protocol or accedes thereto after the deposit of the sixteenth instrument of ratification, acceptance, approval or accession, the Protocol shall enter into force on the ninetieth day following the date of deposit by such Party of its instrument of ratification, acceptance, approval or accession.
Article 19
At any time after five years from the date on which the present Protocol has come into force with respect to a Party, that Party may withdraw from it by giving written notification to the Depositary. Any such withdrawal shall take effect on the ninetieth day following the date of its receipt by the Depositary, or on such later date as may be specified in the notification of the withdrawal.
Article 20
The original of the present Protocol, of which the English, French and Russian texts are equally authentic, shall be deposited with the Secretary-General of the United Nations.
IN WITNESS WHEREOF the undersigned, being duly authorized thereto, have signed the present Protocol.
Done at Aarhus (Denmark), this twenty-fourth day of June, one thousand nine hundred and ninety-eight.
Unless otherwise specified in the present Protocol, this annex shall not apply to the substances listed below when they occur: (i) as contaminants in products; or (ii) in articles manufactured or in use by the implementation date; or (iii) as site-limited chemical intermediates in the manufacture of one or more different substances and are thus chemically transformed. Unless otherwise specified, each obligation below is effective upon the date of entry into force of the Protocol.
|    Substance    |                Implementation requirements               |
|                 +--------------+-------------------------------------------+
|                 | Elimination  |                Conditions                 |
|                 |      of      |                                           |
|Aldrin           |Production    |None                                       |
|CAS: 309-00-2    +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|Chlordane        |Production    |None                                       |
|CAS: 57-74-9     +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|Chlordecone      |Production    |None                                       |
|CAS: 143-50-0    +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|DDT              |Production    |1. Elimination production within one year  |
|CAS: 50-29-3     |              |of consensus by the Parties that suitable  |
|                 |              |alternatives to DDT are available for      |
|                 |              |public healt protection from diseases such |
|                 |              |as malaria and encephalitis.               |
|                 |              |2. With a view to eliminationg the         |
|                 |              |production of DDT at the earliest          |
|                 |              |opportunity, the Parties shall, no later   |
|                 |              |than one year after the data of entry into |
|                 |              |force of the present Protocol and          |
|                 |              |periodically thereafter as necessary, and  |
|                 |              |in consultation with the World Health      |
|                 |              |Organization, the Food and Agriculture     |
|                 |              |Orgnization of the United Nations and the  |
|                 |              |United Nations Environment Programme,      |
|                 |              |review the availability and feasibility of |
|                 |              |alternatives and, as appropriate, promote  |
|                 |              |the commercialization of safer and         |
|                 |              |economically viable aternatives to DDT.    |
|                 +--------------+-------------------------------------------+
|                 |Use           |None, except as identified in annex II.    |
|Dieldrin         |Production    |None                                       |
|CAS: 60-51-1     +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|Endrin           |Production    |None                                       |
|CAS: 72-20-8     +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|Heptachlor       |Production    |None                                       |
|CAS: 76-44-8     +--------------+-------------------------------------------+
|                 |Use           |None, except for use by certified personnel|
|                 |              |for the control of fire ants in closed     |
|                 |              |industrial electrical junction boxes. Such |
|                 |              |use shall be re-evaluated under this       |
|                 |              |Protocol no later than two years after the |
|                 |              |date of entry into force.                  |
|Hexabromobiphenyl|Production    |None                                       |
|CAS: 36355-01-8  +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|Hexachlorobenzene|Production    |None, except for production for a limited  |
|CAS: 118-74-1    |              |purpose as specified in a statement        |
|                 |              |deposited by a country with an economy in  |
|                 |              |transition upon signature or accession.    |
|                 +--------------+-------------------------------------------+
|                 |Use           |None, except for a limited use as specified|
|                 |              |in a statement deposited by a country with |
|                 |              |an economy in transition upon signature or |
|                 |              |accession.                                 |
|Mirex            |Production    |None                                       |
|CAS: 2385-85-5   +--------------+-------------------------------------------+
|                 |Use           |None                                       |
|PCB(a/)          |Production    |None, except for countries with economies  |
|                 |              |in transition which shall eliminate        |
|                 |              |production as soon as possible and no later|
|                 |              |than 31 December 2005 and which state in a |
|                 |              |declaration to be deposited together with  |
|                 |              |their instrument of ratification,          |
|                 |              |acceptance, approval or accession, their   |
|                 |              |intention to do so.                        |
|                 +--------------+-------------------------------------------+
|                 |Use           |None, except as identified in annex II.    |
|Toxaphene        |Production    |None                                       |
|CAS: 8001-35-2   +--------------+-------------------------------------------+
|                 |Use           |None                                       |
(a/) The Parties agree to reassess under the Protocol by 31 December 2004
the production and use of polychlorinated terphenyls and "ugilec".
Unless otherwise specified in the present Protocol, this annex shall not apply to the substances listed below when they occur: (i) as contaminants in products; or (ii) in articles manufactured or in use by the implementation date; or (iii) as site-limited chemical intermediates in the manufacture of one or more different substances and are thus chemically transformed. Unless otherwise specified, each obligation below is effective upon the date of entry into force of the Protocol.
|  Substance  |                  Implementation requirements                 |
|             +-------------------------------+------------------------------+
|             |       Restricted to uses      |          Conditions          |
|DDT          |1. For public health           |1. Use allowed only as a      |
|CAS: 50-29-3 |protection from diseases such  |component of an integrated    |
|             |as malaria encephalitis.       |pest management strategy and  |
|             |                               |only to the extent necessary  |
|             |                               |and only until one year after |
|             |                               |the date of the elimination of|
|             |2. As a chemical intermediate  |production in accordance with |
|             |to produce Dicofol.            |annex I.                      |
|             |                               |2. Such use shall be          |
|             |                               |reassessed no later than two  |
|             |                               |years after the date of entry |
|             |                               |into force of the present     |
|             |                               |Protocol.                     |
|HCH          |Technical HCH (i.e. HCH mixed  |                              |
|CAS: 608-73-1|isomers) is restricted to use  |                              |
|             |as an intermediate in chemical |                              |
|             |manufacturing.                 |                              |
|             +-------------------------------+------------------------------+
|             |Products in which at least 99% |All restricted uses of lindane|
|             |of the HCH isomer is in the    |shall be reassessed under the |
|             |gamma form (i.e. lindane, CAS: |Protocol no later than two    |
|             |58-89-9) are restricted to the |years after the date of entry |
|             |following uses:                |into force.                   |
|             |1. Seed treatment.             |                              |
|             |2. Soil applications directly  |                              |
|             |followed by incorporation into |                              |
|             |the topsoil surface layer      |                              |
|             |3. Professional remedial and   |                              |
|             |industrial treatment of        |                              |
|             |lumber, timer and logs         |                              |
|             |4. Public health and           |                              |
|             |veterinary topical             |                              |
|             |insecticide.                   |                              |
|             |5. Non-aerial application to   |                              |
|             |tree seedlings, small-scale    |                              |
|             |lawn use, and indoor and       |                              |
|             |outdoor use for nursery stock  |                              |
|             |and ornamentals.               |                              |
|             |6. Indoor industrial and       |                              |
|             |residential applications       |                              |
|PCB (a/)     |PCBs in use as of the date of  |Parties shall make determined |
|             |entry into force or produced   |efforts designed to lead to:  |
|             |up to 31 December 2005 in      |(a)  The elimination of the   |
|             |accordance with the provisions |use of identifiable PCBs in   |
|             |of annex I.                    |equipment (i.e. transformers, |
|             |                               |capacitors or other           |
|             |                               |receptacles containing        |
|             |                               |residual liquid stocks)       |
|             |                               |containing PCBs in volumes    |
|             |                               |greater than 5 dm3 and having |
|             |                               |a concentration of 0.05% PCBs |
|             |                               |or greater, as soon as        |
|             |                               |possible, but no later than 31|
|             |                               |December 2010, or 31 December |
|             |                               |2015 for countries with       |
|             |                               |economies in transition;      |
|             |                               |(b)  The destruction or       |
|             |                               |decontamination in an         |
|             |                               |environmentally sound manner  |
|             |                               |of all liquid PCBs referred to|
|             |                               |in subparagraph (a) and other |
|             |                               |liquid PCBs containing more   |
|             |                               |than 0.005% PCBs not in       |
|             |                               |equipment, as soon as         |
|             |                               |possible, but no later than 31|
|             |                               |December 2015, or 31 December |
|             |                               |2020 for countries with       |
|             |                               |economies in transition; and  |
|             |                               |(c)  The decontamination or   |
|             |                               |disposal of equipment referred|
|             |                               |in subparagraph (a) in an     |
|             |                               |environmentally sound manner. |
(a/) The Parties agree to reassess under the Protocol by 31 December 2004
the production and use of polychlorinated terphenyls and "ugilec".
|    Substance    |                      Reference year                     |
|PAHs (a/)        |1990; or an alternative year from 1985 to 1995           |
|                 |inclusive, specified by a Party upon ratification,       |
|                 |acceptance, approval or accession                        |
|Dioxins/furans   |1990; or an alternative year from 1985 to 1995           |
|(b/)             |inclusive, specified by a Party upon ratification,       |
|                 |acceptance, approval or accession.                       |
|Hexachlorobenzene|1990; or an alternative year from 1985 to 1995           |
|                 |inclusive, specified by a Party upon ratification,       |
|                 |acceptance, approval or accession.                       |
    (a/) Polycyclic aromatic hydrocarbons (PAHs): For the purposes of 
emission inventories, the following four indicator compounds shall be used:
benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno
    (b/) Dioxins and furans (PCDD/F): Polychlorinated dibenzo-p-dioxins 
(PCDD) and polychlorinated dibenzofurans (PCDF) are tricyclic, aromatic 
compounds formed by two benzene rings which are connected by two oxygen atoms
in PCDD and by one oxygen atom in PCDF and the hydrogen atoms of which may be
replaced by up to eight chlorine atoms.
1. A definition of dioxins and furans (PCDD/F) is provided in annex III to the present Protocol.
2. Limit values are expressed as ng/m3 or mg/m3 under standard conditions (273.15 K, 101.3 kPa, and dry gas).
3. Limit values relate to the normal operating situation, including start-up and shutdown procedures, unless specific limit values have been defined for those situations.
4. Sampling and analysis of all pollutants shall be carried out according to the standards laid down by the Comité européen de normalisation (CEN), the International Organization for Standardization (ISO), or the corresponding United States or Canadian reference methods. While awaiting the development of CEN or ISO standards, national standards shall apply.
5. For verification purposes, the interpretation of measurement results in relation to the limit value must also take into account the inaccuracy of the measurement method. A limit value is considered to be met if the result of the measurement, from which the inaccuracy of the measurement method is subtracted, does not exceed it.
6. Emissions of different congeners of PCDD/F are given in toxicity equivalents (TE) in comparison to 2,3,7,8-TCDD using the system proposed by the NATO Committee on the Challenges of Modern Society (NATO-CCMS) in 1988.
    7. The following limit values, which refer to 11% O(2) concentration in 
       flue gas, apply to the following incinerator types:
    Municipal solid waste (burning more than 3 tonnes per hour)
            0.1 ng TE/m3
    Medical solid waste (burning more than 1 tonne per hour)
            0.5 ng TE/m3
    Hazardous waste (burning more than 1 tonne per hour)
            0.2 ng TE/m3
1. The purpose of this annex is to provide the Parties to the Convention with guidance in identifying best available techniques to allow them to meet the obligations in article 3, paragraph 5, of the Protocol.
2. "Best available techniques" (BAT) means the most effective and advanced stage in the development of activities and their methods of operation which indicate the practical suitability of particular techniques for providing in principle the basis for emission limit values designed to prevent and, where that is not practicable, generally to reduce emissions and their impact on the environment as a whole:
– ‘Techniques' includes both the technology used and the way in which the installation is designed, built, maintained, operated and decommissioned;
– ‘Available' techniques means those developed on a scale which allows implementation in the relevant industrial sector, under economically and technically viable conditions, taking into consideration the costs and advantages, whether or not the techniques are used or produced inside the territory of the Party in question, as long as they are reasonably accessible to the operator;
– ‘Best' means most effective in achieving a high general level of protection of the environment as a whole.
In determining the best available techniques, special consideration should be given, generally or in specific cases, to the factors below, bearing in mind the likely costs and benefits of a measure and the principles of precaution and prevention:
– The use of low-waste technology;
– The use of less hazardous substances;
– The furthering of recovery and recycling of substances generated and used in the process and of waste;
– Comparable processes, facilities or methods of operation which have been tried with success on an industrial scale;
– Technological advances and changes in scientific knowledge and understanding;
– The nature, effects and volume of the emissions concerned;
– The commissioning dates for new or existing installations;
– The time needed to introduce the best available technique;
– The consumption and nature of raw materials (including water) used in the process and its energy efficiency;
– The need to prevent or reduce to a minimum the overall impact of the emissions on the environment and the risks to it;
– The need to prevent accidents and to minimize their consequences for the environment.
The concept of best available techniques is not aimed at the prescription of any specific technique or technology, but at taking into account the technical characteristics of the installation concerned, its geographical location and the local environmental conditions.
3. Information regarding the effectiveness and costs of control measures is based on documents received and reviewed by the Task Force and the Preparatory Working Group on POPs. Unless otherwise indicated, the techniques listed are considered to be well established on the basis of operational experience.
4. Experience with new plants incorporating low-emission techniques, as well as with retrofitting of existing plants, is continuously growing. The regular elaboration and amendment of the annex will therefore be necessary. Best available techniques (BAT) identified for new plants can usually be applied to existing plants provided there is an adequate transition period and they are adapted.
5. The annex lists a number of control measures which span a range of costs and efficiencies. The choice of measures for any particular case will depend on a number of factors, including economic circumstances, technological infrastructure and capacity, and any existing air pollution control measures.
6. The most important POPs emitted from stationary sources are:
(a) Polychlorinated dibenzo-p-dioxins/furans (PCDD/F);
(b) Hexachlorobenzene (HCB);
(c) Polycyclic aromatic hydrocarbons (PAHs).
Relevant definitions are provided in annex III to the present Protocol.
7. PCDD/F are emitted from thermal processes involving organic matter and chlorine as a result of incomplete combustion or chemical reactions. Major stationary sources of PCDD/F may be as follows:
(a) Waste incineration, including co-incineration;
(b) Thermal metallurgical processes, e.g. production of aluminium and other non-ferrous metals, iron and steel;
(c) Combustion plants providing energy;
(d) Residential combustion; and
(e) Specific chemical production processes releasing intermediates and by-products.
8. Major stationary sources of PAH emissions may be as follows:
(a) Domestic wood and coal heating;
(b) Open fires such as refuse burning, forest fires and after-crop burning;
(c) Coke and anode production;
(d) Aluminium production (via Soederberg process); and
(e) Wood preservation installations, except for a Party for which this category does not make a significant contribution to its total emissions of PAH (as defined in annex III).
9. Emissions of HCB result from the same type of thermal and chemical processes as those emitting PCDD/F, and HCB is formed by a similar mechanism. Major sources of HCB emissions may be as follows:
(a) Waste incineration plants, including co-incineration;
(b) Thermal sources of metallurgical industries; and
(c) Use of chlorinated fuels in furnace installations.
10. There are several approaches to the control or prevention of POP emissions from stationary sources. These include the replacement of relevant feed materials, process modifications (including maintenance and operational control) and retrofitting existing plants. The following list provides a general indication of available measures, which may be implemented either separately or in combination:
(a) Replacement of feed materials which are POPs or where there is a direct link between the materials and POP emissions from the source;
(b) Best environmental practices such as good housekeeping, preventive maintenance programmes, or process changes such as closed systems (for instance in cokeries or use of inert electrodes for electrolysis);
(c) Modification of process design to ensure complete combustion, thus preventing the formation of persistent organic pollutants, through the control of parameters such as incineration temperature or residence time;
(d) Methods for flue-gas cleaning such as thermal or catalytic incineration or oxidation, dust precipitation, adsorption;
(e) Treatment of residuals, wastes and sewage sludge by, for example, thermal treatment or rendering them inert.
11. The emission levels given for different measures in tables 1, 2, 4, 5, 6, 8, and 9 are generally case-specific. The figures or ranges give the emission levels as a percentage of the emission limit values using conventional techniques.
12. Cost-efficient considerations may be based on total costs per year per unit of abatement (including capital and operational costs). POP emission reduction costs should also be considered within the framework of the overall process economics, e.g. the impact of control measures and costs of production. Given the many influencing factors, investment and operating cost figures are highly case-specific.
A. Waste incineration
13. Waste incineration includes municipal waste, hazardous waste, medical waste and sewage sludge incineration.
14. The main control measures for PCDD/F emissions from waste incineration facilities are:
(a) Primary measures regarding incinerated wastes;
(b) Primary measures regarding process techniques;
(c) Measures to control physical parameters of the combustion process and waste gases (e.g. temperature stages, cooling rate, O(2) content, etc.);
(d) Cleaning of the flue gas; and
(e) Treatment of residuals from the cleaning process.
15. The primary measures regarding the incinerated wastes, involving the management of feed material by reducing halogenated substances and replacing them by non-halogenated alternatives, are not appropriate for municipal or hazardous waste incineration. It is more effective to modify the incineration process and install secondary measures for flue-gas cleaning. The management of feed material is a useful primary measure for waste reduction and has the possible added benefit of recycling. This may result in indirect PCDD/F reduction by decreasing the waste amounts to be incinerated.
16. The modification of process techniques to optimize combustion conditions is an important and effective measure for the reduction of PCDD/F emissions (usually 850°C or higher, assessment of oxygen supply depending on the heating value and consistency of the wastes, sufficient residence time - - 850°C for ca. 2 sec - - and turbulence of the gas, avoidance of cold gas regions in the incinerator, etc.). Fluidized bed incinerators keep a lower temperature than 850°C with adequate emission results. For existing incinerators this would normally involve redesigning and/or replacing a plant - - an option which may not be economically viable in all countries. The carbon content in ashes should be minimized.
17. Flue gas measures. The following measures are possibilities for lowering reasonably effectively the PCDD/F content in the flue gas. The de novo synthesis takes place at about 250 to 450°C. These measures are a prerequisite for further reductions to achieve the desired levels at the end of the pipe:
(a) Quenching the flue gases (very effective and relatively inexpensive);
(b) Adding inhibitors such as triethanolamine or triethylamine (can reduce oxides of nitrogen as well), but side-reactions have to be considered for safety reasons;
(c) Using dust collection systems for temperatures between 800 and 1000°C, e.g. ceramic filters and cyclones;
(d) Using low-temperature electric discharge systems; and
(e) Avoiding fly ash deposition in the flue gas exhaust system.
18. Methods for cleaning the flue gas are:
(a) Conventional dust precipitators for the reduction of particle-bound PCDD/F;
(b) Selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR);
(c) Adsorption with activated charcoal or coke in fixed or fluidized systems;
(d) Different types of adsorption methods and optimized scrubbing systems with mixtures of activated charcoal, open hearth coal, lime and limestone solutions in fixed bed, moving bed and fluidized bed reactors. The collection efficiency for gaseous PCDD/F can be improved with the use of a suitable pre-coat layer of activated coke on the surface of a bag filter;
(e) H(2)O(2)-oxidation; and
(f) Catalytic combustion methods using different types of catalysts (i.e. Pt/Al(2)O(3) or copper-chromite catalysts with different promoters to stabilize the surface area and to reduce ageing of the catalysts).
19. The methods mentioned above are capable of reaching emission levels of 0.1 ng TE/m3 PCDD/F in the flue gas. However, in systems using activated charcoal or coke adsorbers/filters care must be taken to ensure that fugitive carbon dust does not increase PCDD/F emissions downstream. Also, it should be noted that adsorbers and dedusting installations prior to catalysts (SCR technique) yield PCDD/F-laden residues, which need to be reprocessed or require proper disposal.
20. A comparison between the different measures to reduce PCDD/F in flue gas is very complex. The resulting matrix includes a wide range of industrial plants with different capacities and configuration. Cost parameters include the reduction measures for minimizing other pollutants as well, such as heavy metals (particle-bound or not particle-bound). A direct relation for the reduction in PCDD/F emissions alone cannot, therefore, be isolated in most cases. A summary of the available data for the various control measures is given in table 1.
Table 1: Comparison of different flue-gas cleaning measures and process modifications in waste incineration plants to reduce PCDD/F emissions
|  Management options  |   Emission    | Estimated |    Management risks    |
|                      |level (%) (a/) |   costs   |                        |
|Primary measures by   |               |           |                        |
|modification of feed  |               |           |                        |
|materials:            |               |           |                        |
|– Elimination of      |Resulting      |           |Pre-sorting of feed     |
|precursors and        |emission level |           |material not effective; |
|chlorine-containing   |not quantified;|           |only parts could be     |
|feed materials; and   |seems not to be|           |collected; other        |
|                      |linearly       |           |chlorine-containing     |
|                      |dependent on   |           |material, for instance  |
|– Management of waste |the amount of  |           |kitchen salt, paper,    |
|streams.              |the feed       |           |etc., cannot be         |
|                      |material.      |           |avoided. For hazardous  |
|                      |               |           |chemical waste this is  |
|                      |               |           |not desirable.          |
|                      |               |           |Useful primary measure  |
|                      |               |           |and feasible in special |
|                      |               |           |cases (for instance,    |
|                      |               |           |waste oils, electrical  |
|                      |               |           |components, etc.) with  |
|                      |               |           |the possible added      |
|                      |               |           |benefit of recycling of |
|                      |               |           |the materials.          |
|Modification of       |               |           |                        |
|process  technology:  |               |           |                        |
|– Optimized           |               |           |Retrofitting of the     |
|combustion            |               |           |whole process needed.   |
|conditions;           |               |           |                        |
|– Avoidance of        |               |           |                        |
|temperatures below    |               |           |                        |
|850°C and cold        |               |           |                        |
|regions in flue gas;  |               |           |                        |
|                      |               |           |                        |
|– Sufficient oxygen   |               |           |                        |
|content; control of   |               |           |                        |
|oxygen input          |               |           |                        |
|depending on the      |               |           |                        |
|heating value and     |               |           |                        |
|consistency of feed   |               |           |                        |
|material; and         |               |           |                        |
|– Sufficient          |               |           |                        |
|residence time and    |               |           |                        |
|turbulence.           |               |           |                        |
|Flue gas measures:    |               |           |                        |
|                      |               |           |                        |
|Avoiding particle     |               |           |                        |
|deposition by:        |               |           |                        |
|– Soot cleaners,      |               |           |Steam soot blowing can  |
|mechanical rappers,   |               |           |increase PCDD/F         |
|sonic or steam soot   |               |           |formation rates.        |
|blowers.              |               |           |                        |
|Dust removal,         |< 10           |Medium     |Removal of PCDD/F       |
|generally in waste    |               |           |adsorbed onto           |
|incinerators:         |               |           |particles. Removal      |
|                      |               |           |methods of particles in |
|                      |               |           |hot flue gas streams    |
|                      |               |           |used only in pilot      |
|                      |               |           |plants.                 |
|– Fabric filters;     |1 – 0.1        |Higher     |Use at temperatures <   |
|                      |               |           |150°C.                  |
|– Ceramic filters;    |Low efficiency |           |Use at temperatures     |
|                      |               |           |800-1000°C.             |
|– Cyclones; and       |Low efficiency |Medium     |                        |
|– Electrostatic       |Medium         |           |Use at a temperature of |
|precipitation.        |efficiency     |           |450°C; promotion of the |
|                      |               |           |de  novo   synthesis  of|
|                      |               |           |PCDD/F possible, higher |
|                      |               |           |NOx emissions,          |
|                      |               |           |reduction of heat       |
|                      |               |           |recovery.               |
|Catalytic oxidation.  |               |           |Use at temperatures of  |
|                      |               |           |800-1000°C. Separate    |
|                      |               |           |gas phase abatement     |
|                      |               |           |necessary.              |
|Gas quenching.        |               |           |                        |
|High-performance      |               |           |                        |
|adsorption unit with  |               |           |                        |
|added activated       |               |           |                        |
|charcoal particles    |               |           |                        |
|(electrodynamic       |               |           |                        |
|venturi).             |               |           |                        |
|Selective catalytic   |               |High       |NOx reduction if NH(3)  |
|reduction (SCR).      |               |investment |is added; high space    |
|                      |               |and low    |demand, spent catalysts |
|                      |               |operating  |and residues of         |
|                      |               |costs      |activated carbon (AC)   |
|                      |               |           |or lignite coke (ALC)   |
|                      |               |           |may be disposed of,     |
|                      |               |           |catalysts can be        |
|                      |               |           |reprocessed by          |
|                      |               |           |manufacturers in most   |
|                      |               |           |cases, AC and ALC can   |
|                      |               |           |be combusted under      |
|                      |               |           |strictly controlled     |
|                      |               |           |conditions.             |
|Different types of    |               |           |                        |
|wet and dry           |               |           |                        |
|adsorption methods    |               |           |                        |
|with mixtures of      |               |           |                        |
|activated charcoal,   |               |           |                        |
|open-hearth coke,     |               |           |                        |
|lime and limestone    |               |           |                        |
|solutions in fixed    |               |           |                        |
|bed, moving bed and   |               |           |                        |
|fluidized bed         |               |           |                        |
|reactors:             |               |           |                        |
|– Fixed bed reactor,  |< 2            |High in-   |Removal of residuals,   |
|adsorption with       |(0.1 ng TE/m3) |vestment,  |high demand of space.   |
|activated charcoal or |               |medium     |                        |
|open-hearth coke; and |               |operating  |                        |
|                      |               |costs      |                        |
|– Entrained flow or   |< 10           |Low in-    |Removal of residuals.   |
|circulating fluidized |(0.1 ng TE/m3) |vestment,  |                        |
|bed reactor with      |               |medium     |                        |
|added activated       |               |operating  |                        |
|coke/lime or          |               |costs      |                        |
|limestone solutions   |               |           |                        |
|and subsequent fabric |               |           |                        |
|filter.               |               |           |                        |
|Addition of H(2)O(2). |2 – 5          |Low in-    |                        |
|                      |(0.1 ng TE/m3) |vestment,  |                        |
|                      |               |low        |                        |
|                      |               |operating  |                        |
|                      |               |costs      |                        |
(a/) Remaining emission compared to unreduced mode.
21. Medical waste incinerators may be a major source of PCDD/F in many countries. Specific medical wastes such as human anatomical parts, infected waste, needles, blood, plasma and cytostatica are treated as a special form of hazardous waste, while other medical wastes are frequently incinerated on-site in a batch operation. Incinerators operating with batch systems can meet the same requirements for PCDD/F reduction as other waste incinerators.
22. Parties may wish to consider adopting policies to encourage the incineration of municipal and medical waste in large regional facilities rather than in smaller ones. This approach may make the application of BAT more cost-effective.
23. The treatment of residuals from the flue-gas cleaning process. Unlike incinerator ashes, these residuals contain relatively high concentrations of heavy metals, organic pollutants (including PCDD/F), chlorides and sulphides. Their method of disposal, therefore, has to be well controlled. Wet scrubber systems in particular produce large quantities of acidic, contaminated liquid waste. Some special treatment methods exist. They include:
(a) The catalytic treatment of fabric filter dusts under conditions of low temperatures and lack of oxygen;
(b) The scrubbing of fabric filter dusts by the 3-R process (extraction of heavy metals by acids and combustion for destruction of organic matter);
(c) The vitrification of fabric filter dusts;
(d) Further methods of immobilization; and
(e) The application of plasma technology.
B. Thermal processes in the metallurgical industry
24. Specific processes in the metallurgical industry may be important remaining sources of PCDD/F emissions. These are:
(a) Primary iron and steel industry (e.g. blast furnaces, sinter plants, iron pelletizing);
(b) Secondary iron and steel industry; and
(c) Primary and secondary non-ferrous metal industry (production of copper).
PCDD/F emission control measures for the metallurgical industries are summarized in table 2.
25. Metal production and treatment plants with PCDD/F emissions can meet a maximum emission concentration of 0.1 ng TE/m3 (if waste gas volume flow > 5000 m3/h) using control measures.
Table 2: Emission reduction of PCDD/F in the metallurgical industry
|       Management options        |  Emission  |  Estimated |  Management   |
|                                 | level (%)  |    costs   |     risks     |
|                                 |    (a/)    |            |               |
|Sinter plants                                                              |
|Primary measures:                |            |            |               |
|– Optimization/encapsulation of  |            |     Low    |Not 100%       |
|sinter conveying belts;          |            |            |achievable     |
|– Waste gas recirculation e.g.   |     40     |     Low    |               |
|emission optimized sintering     |            |            |               |
|(EOS) reducing waste gas flow by |            |            |               |
|ca. 35% (reduced costs of        |            |            |               |
|further secondary measures by    |            |            |               |
|the reduced waste gas flow),     |            |            |               |
|cap. 1 million Nm3/h;            |            |            |               |
|Secondary measures:              |            |            |               |
|– Electrostatic precipitation +  |   Medium   |   Medium   |               |
|molecular sieve;                 | efficiency |            |               |
|– Addition of                    |    High    |   Medium   |               |
|limestone/activated carbon       | efficiency |            |               |
|mixtures;                        |  (0.1 ng   |            |               |
|                                 |   TE/m3)   |            |               |
|– High-performance scrubbers –   |    High    |   Medium   |0.1 ng TE/m3   |
|existing installation: AIRFINE   | efficiency |            |could be       |
|(Voest Alpine Stahl Linz) since  |  emission  |            |reached with   |
|1993 for 600 000 Nm3/h; second   | reduction  |            |higher energy  |
|installation planned in the      | to 0.2-0.4 |            |demand; no     |
|Netherlands (Hoogoven) for 1998. |  ng TE/m3  |            |existing       |
|                                 |            |            |installation.  |
|Non-ferrous production (e.g. copper)                                       |
|Primary measures:                |            |            |               |
|– Pre-sorting of scrap,          |            |     Low    |               |
|avoidance of feed material like  |            |            |               |
|plastics and PVC-contaminated    |            |            |               |
|scrap, stripping of coatings and |            |            |               |
|use of chlorine-free insulating  |            |            |               |
|materials;                       |            |            |               |
|Secondary measures:              |            |            |               |
|– Quenching the hot waste gases; |    High    |     Low    |               |
|                                 | efficiency |            |               |
|– Use of oxygen or of oxygen-    |   5 – 7    |    High    |               |
|enriched air in firing, oxygen   |   (1.5-2   |            |               |
|injection in the shaft kiln      |   TE/m3)   |            |               |
|(providing complete combustion   |            |            |               |
|and minimization of waste gas    |            |            |               |
|volume);                         |            |            |               |
|– Fixed bed reactor or fluidized |  (0.1 ng   |    High    |               |
|jet stream reactor by adsorption |   TE/m3)   |            |               |
|with activated charcoal or open- |            |            |               |
|hearth coal dust;                |            |            |               |
|– Catalytic oxidation; and       |  (0.1 ng   |    High    |               |
|                                 |   TE/m3)   |            |               |
|– Reduction of residence time in |            |            |               |
|the critical region of           |            |            |               |
|temperature in the waste gas     |            |            |               |
|system.                          |            |            |               |
|Iron and steel production                                                  |
|Primary measures:                |            |            |               |
|– Cleaning of the scrap from oil |            |     Low    |Cleaning       |
|prior to charging of production  |            |            |solvents have  |
|vessels;                         |            |            |to be used.    |
|– Elimination of organic tramp   |            |     Low    |               |
|materials such as oils,          |            |            |               |
|emulsions, greases, paint and    |            |            |               |
|plastics from feedstock          |            |            |               |
|cleaning;                        |            |            |               |
|– Lowering of the specific high  |            |   Medium   |               |
|waste gas volumes;               |            |            |               |
|– Separate collection and        |            |     Low    |               |
|treatment of emissions from      |            |            |               |
|loading and discharging;.        |            |            |               |
|Secondary measures:              |            |            |               |
|– Separate collection and        |            |     Low    |               |
|treatment of emissions from      |            |            |               |
|loading and discharging; and     |            |            |               |
|– Fabric filter in combination   |    < 1     |   Medium   |               |
|with coke injection.             |            |            |               |
|Secondary aluminium production                                             |
|Primary measures:                |            |            |               |
|– Avoidance of halogenated       |            |     Low    |               |
|material (hexachloroethane);     |            |            |               |
|– Avoidance of chlorine-         |            |     Low    |               |
|containing lubricants (for       |            |            |               |
|instance chlorinated paraffins); |            |            |               |
|and                              |            |            |               |
|– Clean-up and sorting of dirty  |            |            |               |
|scrap charges, e.g. by swarf     |            |            |               |
|decoating and drying, swim-sink  |            |            |               |
|separation techniques and        |            |            |               |
|whirling stream deposition;      |            |            |               |
|Secondary measures:              |            |            |               |
|– Single– and multi-stage fabric |    < 1     |   Medium/  |               |
|filter with added activation of  |  (0.1 ng   |    high    |               |
|limestone/ activated carbon in   |   TE/m3)   |            |               |
|front of the filter;             |            |            |               |
|– Minimization and separate      |            |   Medium/  |               |
|removal and purification of      |            |    high    |               |
|differently contaminated waste   |            |            |               |
|gas flows;                       |            |            |               |
|– Avoidance of particulate       |            |   Medium/  |               |
|deposition from the waste gas    |            |    high    |               |
|and promotion of rapid passing   |            |            |               |
|of the critical temperature      |            |            |               |
|range; and                       |            |            |               |
|– Improved pretreatment of       |            |   Medium/  |               |
|aluminium scrap shredders by     |            |    high    |               |
|using swim-sink separation       |            |            |               |
|techniques and grading through   |            |            |               |
|whirling stream deposition.      |            |            |               |
 (a/)Remaining emission compared to unreduced mode.
Sinter plants
26. Measurements at sinter plants in the iron and steel industry have generally shown PCDD/F emissions in the range of 0.4 to 4 ng TE/m3. A single measurement at one plant without any control measures showed an emission concentration of 43 ng TE/m3.
27. Halogenated compounds may result in the formation of PCDD/F if they enter sinter plants in the feed materials (coke breeze, salt content in the ore) and in added recycled material (e.g. millscale, blast furnace top gas dust, filter dusts and sludges from waste water treatment). However, similarly to waste incineration, there is no clear link between the chlorine content of the feed materials and emissions of PCDD/F. An appropriate measure may be the avoidance of contaminated residual material and de-oiling or degreasing of millscale prior to its introduction into the sinter plant.
28. The most effective PCDD/F emission reduction can be achieved using a combination of different secondary measures, as follows:
(a) Recirculating waste gas significantly reduces PCDD/F emissions. Furthermore, the waste gas flow is reduced significantly, thereby reducing the cost of installing any additional end-of-pipe control systems;
(b) Installing fabric filters (in combination with electrostatic precipitators in some cases) or electrostatic precipitators with the injection of activated carbon/open-hearth coal/limestone mixtures into the waste gas;
(c) Scrubbing methods have been developed which include pre-quenching of the waste gas, leaching by high-performance scrubbing and separation by drip deposition. Emissions of 0.2 to 0.4 ng TE/m3 can be achieved. By adding suitable adsorption agents like lignite coal cokes/coal slack, an emission concentration of 0.1 ng TE/m3 can be reached.
Primary and secondary production of copper
29. Existing plants for the primary and secondary production of copper can achieve a PCDD/F emission level of a few picograms to 2 ng TE/m3 after flue-gas cleaning. A single copper shaft furnace emitted up to 29 ng TE/m3 PCDD/F before optimization of the aggregates. Generally, there is a wide range of PCDD/F emission values from these plants because of the large differences in raw materials used in differing aggregates and processes.
30. Generally, the following measures are suitable for reducing PCDD/F emissions:
(a) Pre-sorting scrap;
(b) Pretreating scrap, for example stripping of plastic or PVC coatings, pretreating cable scrap using only cold/mechanical methods;
(c) Quenching hot waste gases (providing utilization of heat), to reduce residence time in the critical region of temperature in the waste gas system;
(d) Using oxygen or oxygen-enriched air in firing, or oxygen injection in the shaft kiln (providing complete combustion and minimization of waste gas volume);
(e) Adsorption in a fixed bed reactor or fluidized jet stream reactor with activated charcoal or open-hearth coal dust; and
(f) Catalytic oxidation.
Production of steel
31. PCDD/F emissions from converter steelworks for steel production and from hot blast cupola furnaces, electric furnaces and electric arc furnaces for the melting of cast iron are significantly lower than 0.1 ng TE/m3. Cold-air furnaces and rotary tube furnaces (melting of cast iron) have higher PCDD/F emissions.
32. Electric arc furnaces used in secondary steel production can achieve an emission concentration value of 0.1 ng TE/m3 if the following measures are used:
(a) Separate collection of emissions from loading and discharging; and
(b) Use of a fabric filter or an electrostatic precipitator in combination with coke injection.
33. The feedstock to electric arc furnaces often contains oils, emulsions or greases. General primary measures for PCDD/F reduction can be sorting, de-oiling and de-coating of scraps, which may contain plastics, rubber, paints, pigments and vulcanizing additives.
Smelting plants in the secondary aluminium industry
34. PCDD/F emissions from smelting plants in the secondary aluminium industry are in the range of approximately 0.1 to 14 ng TE/m3. These levels depend on the type of smelting aggregates, materials used and waste gas purification techniques employed.
35. In summary, single– and multi-stage fabric filters with the addition of limestone/activated carbon/open-hearth coal in front of the filter meet the emission concentration of 0.1 ng TE/m3, with reduction efficiencies of 99%.
36. The following measures can also be considered:
(a) Minimizing and separately removing and purifying differently contaminated waste gas flows;
(b) Avoiding waste gas particle deposition;
(c) Rapidly passing the critical temperature range;
(d) Improving the pre-sorting of scrap aluminium from shredders by using swim-sink separation techniques and grading through whirling stream deposition; and
(e) Improving the pre-cleaning of scrap aluminium by swarf decoating and swarf drying.
37. Options (d) and (e) are important because it is unlikely that modern fluxless smelting techniques (which avoid halide salt fluxes) will be able to handle the low-grade scrap that can be used in rotary kilns.
38. Discussions are continuing under the Convention for the Protection of the Marine Environment of the North-east Atlantic regarding the revision of an earlier recommendation to phase out the use of hexachloroethane in the aluminium industry.
39. The melt can be treated using state-of-the-art technology, for example with nitrogen/chlorine mixtures in the ratio of between 9:1 and 8:2, gas injection equipment for fine dispersion and nitrogen pre– and post-flushing and vacuum degreasing. For nitrogen/chlorine mixtures, a PCDD/F emission concentration of about 0.03 ng TE/m3 was measured (as compared to values of > 1 ng TE/m3 for treatment with chlorine only). Chlorine is required for the removal of magnesium and other undesired components.
C. Combustion of fossil fuels in utility and industrial boilers
40. In the combustion of fossil fuels in utility and industrial boilers (>50 MW thermal capacity), improved energy efficiency and energy conservation will result in a decline in the emissions of all pollutants because of reduced fuel requirements. This will also result in a reduction in PCDD/F emissions. It would not be cost-effective to remove chlorine from coal or oil, but in any case the trend towards gas-fired stations will help to reduce PCDD/F emissions from this sector.
41. It should be noted that PCDD/F emissions could increase significantly if waste material (sewage sludge, waste oil, rubber wastes, etc.) is added to the fuel. The combustion of wastes for energy supply should be undertaken only in installations using waste gas purification systems with highly efficient PCDD/F reduction (described in section A above).
42. The application of techniques to reduce emissions of nitrogen oxides, sulphur dioxide and particulates from the flue gas can also remove PCDD/F emissions. When using these techniques, PCDD/F removal efficiencies will vary from plant to plant. Research is ongoing to develop PCDD/F removal techniques, but until such techniques are available on an industrial scale, no best available technique is identified for the specific purpose of PCDD/F removal.
D. Residential combustion
43. The contribution of residential combustion appliances to total emissions of PCDD/F is less significant when approved fuels are properly used. In addition, large regional differences in emissions can occur due to the type and quality of fuel, geographical appliance density and usage.
44. Domestic fireplaces have a worse burn-out rate for hydrocarbons in fuels and waste gases than large combustion installations. This is especially true if they use solid fuels such as wood and coal, with PCDD/F emission concentrations in the range of 0.1 to 0.7 ng TE/m3.
45. Burning packing material added to solid fuels increases PCDD/F emissions. Even though it is prohibited in some countries, the burning of rubbish and packing material may occur in private households. Due to increasing disposal charges, it must be recognized that household waste materials are being burned in domestic firing installations. The use of wood with the addition of waste packing material can lead to an increase in PCDD/F emissions from 0.06 ng TE/m3 (exclusively wood) to 8 ng TE/m3 (relative to 11% O(2) by volume). These results have been confirmed by investigations in several countries in which up to 114 ng TE/m3 (with respect to 13% oxygen by volume) was measured in waste gases from residential combustion appliances burning waste materials.
46. The emissions from residential combustion appliances can be reduced by restricting the input materials to good-quality fuel and avoiding the burning of waste, halogenated plastics and other materials. Public information programmes for the purchasers/operators of residential combustion appliances can be effective in achieving this goal.
E. Firing installations for wood (<50 MW capacity)
47. Measurement results for wood-firing installations indicate that PCDD/F emissions above 0.1 ng TE/m3 occur in waste gases especially during unfavourable burn-out conditions and/or when the substances burned have a higher content of chlorinated compounds than normal untreated wood. An indication of poor firing is the total carbon concentration in the waste gas. Correlations have been found between CO emissions, burn-out quality and PCDD/F emissions. Table 3 summarizes some emission concentrations and factors for wood-firing installations.
Table 3: Quantity-related emission concetrations and factors for wood-firing installations
|          Fuel          |     Emission      |  Emission  |  Emission factor |
|                        |   concentration   |   factor   |      (ng/GJ)     |
|                        |    (ng TE/m3)     | (ng TE/kg) |                  |
|Natural wood (beech     |    0.02 – 0.10    | 0.23 – 1.3 |      12 – 70     |
|tree)                   |                   |            |                  |
|Natural wood chips from |    0.07 – 0.21    | 0.79 – 2.6 |     43 – 140     |
|forests                 |                   |            |                  |
|Chipboard               |    0.02 – 0.08    | 0.29 – 0.9 |      16 – 50     |
|Urban waste wood        |    2.7 – 14.4     |  26 – 173  |    1400 – 9400   |
|Residential waste       |        114        |    3230    |                  |
|Charcoal                |       0.03        |            |                  |
48. The combustion of urban waste wood (demolition wood) in moving grates leads to relatively high PCDD/F emissions, compared to non-waste wood sources. A primary measure for emission reduction is to avoid the use of treated waste wood in wood-firing installations. Combustion of treated wood should be undertaken only in installations with the appropriate flue-gas cleaning to minimize PCDD/F emissions.
A. Coke production
49. During coke production, PAHs are released into the ambient air mainly:
(a) When the oven is charged through the charging holes;
(b) By leakages from the oven door, the ascension pipes and the charging hole lids; and
(c) During coke pushing and coke cooling.
50. Benzo(a)pyrene (BaP) concentration varies substantially between the individual sources in a coke battery. The highest BaP concentrations are found on the top of the battery and in the immediate vicinity of the doors.
51. PAH from coke production can be reduced by technically improving existing integrated iron and steel plants. This might entail the closure and replacement of old coke batteries and the general reduction in coke production, for instance by injecting high-value coal in steel production.
52. A PAH reduction strategy for coke batteries should include the following technical measures:
(a) Charging the coke ovens:
– Particulate matter emission reduction when charging the coal from the bunker into the charging cars;
– Closed systems for coal transfer when coal pre-heating is used;
– Extraction of filling gases and subsequent treatment, either by passing the gases into the adjacent oven or by passing via a collecting main to an incinerator and a subsequent dedusting device. In some cases the extracted filling gases may be burned on the charging cars, but the environmental performance and safety of these charging-car-based systems is less satisfactory. Sufficient suction should be generated by steam or water injection in the ascension pipes;
(b) Emissions at charging hole lids during coking operation should be avoided by:
– Using charging hole lids with highly efficient sealing;
– Luting the charging hole lids with clay (or equally effective material) after each charging operation;
– Cleaning the charging hole lids and frames before closing the charging hole;
– Keeping oven ceilings free from coal residuals;
(c) Ascension pipe lids should be equipped with water seals to avoid gas and tar emissions, and the proper operation of the seals should be maintained by regular cleaning;
(d) Coke oven machinery for operating the coke oven doors should be equipped with systems for cleaning the seals' surfaces on the oven door frames and oven doors;
(e) Coke oven doors:
– Highly effective seals should be used (e.g. spring-loaded membrane doors);
– Seals on the oven doors and door frames should be cleaned thoroughly at every handling operation;
– Doors should be designed in a manner that allows the installation of particulate matter extraction systems with connection to a dedusting device (via a collecting main) during pushing operations;
(f) The coke transfer machine should be equipped with an integrated hood, stationary duct and stationary gas cleaning system (preferably a fabric filter);
(g) Low-emission procedures should be applied for coke cooling, e.g. dry coke cooling. The replacement of a wet quenching process by dry coke cooling should be preferred, so long as the generation of waste water is avoided by using a closed circulation system. The dusts generated when dry quenched coke is handled should be reduced.
53. A coke-making process referred to as "non-recovery coke-making" emits significantly less PAH than the more conventional by-product recovery process. This is because the ovens operate under negative pressure, thereby eliminating leaks to the atmosphere from the coke oven doors. During coking, the raw coke oven gas is removed from the ovens by a natural draught, which maintains a negative pressure in the ovens. These ovens are not designed to recover the chemical by-products from raw coke oven gas. Instead, the offgases from the coking process (including PAH) are burned efficiently at high temperatures and with long residence times. The waste heat from this incineration is used to provide the energy for coking, and excess heat may be used to generate steam. The economics of this type of coking operation may require a cogeneration unit to produce electricity from the excess steam. Currently there is only one non-recovery coke plant operating in the United States, and one is in operation in Australia. The process is basically a horizontal sole-flue non-recovery coke oven with an incineration chamber adjoining two ovens. The process provides for alternate charging and coking schedules between the two ovens. Thus, one oven is always providing the incineration chamber with coke gases. The coke gas combustion in the incineration chamber provides the necessary heat source. The incineration chamber design provides the necessary dwell time (approximately 1 second) and high temperatures (minimum of 900°C).
54. An effective monitoring programme for leakages from coke oven door seals, ascension pipes and charging hole lids should be operated. This implies the monitoring and recording of leakages and immediate repair or maintenance. A significant reduction of diffuse emissions can thus be achieved.
55. Retrofitting existing coke batteries to facilitate condensation of flue gases from all sources (with heat recovery) results in a PAH reduction of 86% to more than 90% in air (without regard to waste water treatment). Investment costs can be amortized in five years, taking into account recovered energy, heated water, gas for synthesis and saved cooling water.
56. Increasing coke oven volumes results in a decrease in the total number of ovens, oven door openings (amount of pushed ovens per day), number of seals in a coke battery and consequently PAH emissions. Productivity increases in the same way by decreasing operating and personnel costs.
57. Dry coke cooling systems require a higher investment cost than wet methods. Higher operating costs can be compensated for by heat recovery in a process of pre-heating the coke. The energy efficiency of a combined dry coke cooling/coal pre-heating system rises from 38 to 65%. Coal pre-heating boosts productivity by 30%. This can be raised to 40% because the coking process is more homogeneous.
58. All tanks and installations for the storage and treatment of coal tar and coal tar products must be equipped with an efficient vapour recovery return and/or vapour destruction system. The operating costs of vapour destruction systems can be reduced in an autothermal after-burning mode if the concentration of the carbon compounds in the waste is high enough.
59. Table 4 summarizes PAH emission reduction measures in coke production plants.
Table 4: PAH emission control for coke production
|   Management options   |  Emission  |  Estimated costs  |Management risks |
|                        | level (%)  |                   |                 |
|                        |    (a/)    |                   |                 |
|Retrofitting of old     | Total < 10 |High               |Emissions to     |
|plants with             |  (without  |                   |waste water by   |
|condensation of emitted |   waste    |                   |wet quenching are|
|flue gases from all     |   water)   |                   |very high. This  |
|sources includes the    |            |                   |method should be |
|following measures:     |            |                   |applied only if  |
|                        |            |                   |the waste is     |
|                        |            |                   |reused in a      |
|                        |            |                   |closed cycle.    |
|– Evacuation and after- |     5      |(Amortization of   |                 |
|burning of the filling  |            |investment costs,  |                 |
|gases during charging   |            |taking into        |                 |
|of ovens or passing the |            |account energy     |                 |
|gases into the adjacent |            |recovery, heated   |                 |
|oven as far as          |            |water, gas for     |                 |
|possible;               |            |synthesis and      |                 |
|                        |            |saved cooling      |                 |
|                        |            |water, may be 5    |                 |
|                        |            |years.)            |                 |
|– Emissions at charging |    < 5     |                   |                 |
|hole lids should be     |            |                   |                 |
|avoided as far as       |            |                   |                 |
|possible, e.g. by       |            |                   |                 |
|special hole lid        |            |                   |                 |
|construction and highly |            |                   |                 |
|effective sealing       |            |                   |                 |
|methods. Coke oven      |            |                   |                 |
|doors with highly       |            |                   |                 |
|effective sealings      |            |                   |                 |
|should be used.         |            |                   |                 |
|Cleaning of charging    |            |                   |                 |
|hole lids and frames    |            |                   |                 |
|before closing the      |            |                   |                 |
|charging hole;          |            |                   |                 |
|– Waste gases from      |    < 5     |                   |                 |
|pushing operations      |            |                   |                 |
|should be collected and |            |                   |                 |
|fed to a dedusting      |            |                   |                 |
|device;                 |            |                   |                 |
|– Quenching during coke |            |                   |                 |
|cooling by wet methods  |            |                   |                 |
|only if properly        |            |                   |                 |
|applied without waste   |            |                   |                 |
|water.                  |            |                   |                 |
|Low emission procedures |     No     |Higher investment  |                 |
|for coke cooling, e.g.  | emissions  |costs than for wet |                 |
|dry coke cooling.       | into water |cooling (but lower |                 |
|                        |            |costs by           |                 |
|                        |            |preheating of coke |                 |
|                        |            |and use of waste   |                 |
|                        |            |heat.)             |                 |
|Increasing the use of   |Considerable|Investment about   |In most cases    |
|high-volume ovens to    |            |10% higher than    |total            |
|lower the humber of     |            |conventional       |retrofitting or  |
|openings and the        |            |plants             |the installation |
|surface of sealing      |            |                   |of a new cokery  |
|areas.                  |            |                   |is needed.       |
    (a/) Remaining emission compared to unreduced mode.
B. Anode production
60. PAH emissions from anode production have to be dealt with in a similar fashion as those from coke production.
61. The following secondary measures for emission reduction of PAH-contaminated dust are used:
(a) Electrostatic tar precipitation;
(b) Combination of a conventional electrostatic tar filter with a wet electrostatic filter as a more efficient technical measure;
(c) Thermal after-burning of the waste gases; and
(d) Dry scrubbing with limestone/petroleum coke or aluminum oxide (Al(2)O(3)).
62. The operating costs in thermal after-burning can be reduced in an autothermal after-burning mode if the concentration of carbon compounds in the waste gas is high enough. Table 5 summarizes PAH emission control measures for anode production.
Table 5: PAH emission control for anode production
|      Management options       |Emission|  Estimated  |  Management risks  |
|                               | level  |    costs    |                    |
|                               |(%)(a/) |             |                    |
|Modernization of old plants by |  3-10  |High         |                    |
|reducing diffuse emissions     |        |             |                    |
|with the following measures:   |        |             |                    |
|– Reduction of leakages;       |        |             |                    |
|– Installation of flexible     |        |             |                    |
|sealants at the oven doors;    |        |             |                    |
|– Evacuation of filling gases  |        |             |                    |
|and subsequent treatment,      |        |             |                    |
|either by passing the gases    |        |             |                    |
|into the adjacent oven or by   |        |             |                    |
|passing the gases via a        |        |             |                    |
|collecting main to an          |        |             |                    |
|incinerator and a subsequent   |        |             |                    |
|dedusting device on the        |        |             |                    |
|ground;                        |        |             |                    |
|– Operating and coke oven      |        |             |                    |
|cooling systems; and           |        |             |                    |
|– Evacuation and purification  |        |             |                    |
|of particulate emissions from  |        |             |                    |
|coke.                          |        |             |                    |
|Established technologies for   | 45-50  |             |Implemented in the  |
|anode production in the        |        |             |Netherlands in 1990.|
|Netherlands:                   |        |             |Scrubbing with      |
|                               |        |             |limestone or        |
|                               |        |             |petroleum cokes is  |
|                               |        |             |effective for       |
|                               |        |             |reducing PAH; with  |
|                               |        |             |aluminium not know. |
|– New kiln with dry scrubber   |        |             |                    |
|(with limestone/petroleum      |        |             |                    |
|cokes or with aluminium)       |        |             |                    |
|– Effluent recycling in paste  |        |             |                    |
|unit.                          |        |             |                    |
|BAT:                           |        |             |                    |
|– Electrostatic dust           |  2-5   |             |Regular cleaning of |
|precipitation; and             |        |             |tar is needed.      |
|– Thermal after-burning.       |   15   |Lower        |Operating in        |
|                               |        |operating    |autothermal mode    |
|                               |        |costs in an  |only if the         |
|                               |        |autothermal  |concentration of PAH|
|                               |        |mode.        |in the waste gas is |
|                               |        |             |high.               |
(a/) Remaining emission compared to unreduced mode.
C. Aluminium industry
63. Aluminium is produced from aluminium oxide (Al(2)O(3)) by electrolysis in pots (cells) electrically connected in series. Pots are classified as prebake or Soederberg pots, according to the type of the anode.
64. Prebake pots have anodes consisting of calcined (baked) carbon blocks, which are replaced after partial consumption. Soederberg anodes are baked in the cell, with a mixture of petroleum coke and coal tar pitch acting as a binder.
65. Very high PAH emissions are released from the Soederberg process. Primary abatement measures include modernization of existing plants and optimization of the processes, which could reduce PAH emissions by 70-90%. An emission level of 0.015 kg B(a)P/tonne of Al could be reached. Replacing the existing Soederberg cells by prebaked ones would require major reconstruction of the existing process, but would nearly eliminate the PAH emissions. The capital costs of such replacements are very high.
66. Table 6 summarizes PAH emission control measures for aluminium production.
Table 6: PAH emission control for aluminium production using the Soederberg process
|   Management options  |Emission |  Estimated costs  |  Management risks   |
|                       |  level  |                   |                     |
|                       | (%)(a/) |                   |                     |
|Replacement of         |  3-30   |Higher costs for   |Soederberg           |
|Soederberg electrodes  |         |electrodes about   |electrodes are       |
|by:                    |         |US$ 800 million    |cheaper than         |
|                       |         |                   |prebaked ones,       |
|– Prebaked electrodes  |         |                   |because no anode     |
|(avoidance of pitch    |         |                   |baking plant is      |
|binders);              |         |                   |needed. Research is  |
|                       |         |                   |in progress, but     |
|– Inert anodes.        |         |                   |expectations are     |
|                       |         |                   |low.                 |
|                       |         |                   |Efficient operation  |
|                       |         |                   |and monitoring of    |
|                       |         |                   |emission are         |
|                       |         |                   |essential parts of   |
|                       |         |                   |emission control.    |
|                       |         |                   |Poor performance     |
|                       |         |                   |could cause          |
|                       |         |                   |significant diffuse  |
|                       |         |                   |emissions.           |
|Closed prebake systems |   1-5   |                   |                     |
|with point feeding of  |         |                   |                     |
|alumina and efficient  |         |                   |                     |
|process control, hoods |         |                   |                     |
|covering the entire pot|         |                   |                     |
|and allowing efficient |         |                   |                     |
|collection of air      |         |                   |                     |
|pollutants.            |         |                   |                     |
|Soederberg pot with    |  > 10   |Retrofit of        |Diffuse emissions    |
|vertical contact bolts |         |Soederberg         |occur during         |
|and waste gas          |         |technology by      |feeding, crust       |
|collection systems.    |         |encapsulation and  |breaking and lifting |
|                       |         |modified feeding   |of iron contact      |
|                       |         |point: US$ 50,000 –|bolts to a higher    |
|                       |         |10,000 per furnace |position             |
|Sumitomo technology    |         |Low – Medium       |                     |
|(anode briquettes for  |         |                   |                     |
|VSS process).          |         |                   |                     |
|Gas cleaning:          |         |                   |                     |
|– Electrostatic tar    |   2-5   |Low                |High rate of         |
|filters;               |         |                   |sparking and         |
|                       |         |                   |electrical arcing;   |
|– Combination of       |   > 1   |Medium             |Wet gas-cleaning     |
|conventional           |         |                   |generates waste      |
|electrostatic tar      |         |                   |water.               |
|filters with           |         |                   |                     |
|electrostatic wet gas  |         |                   |                     |
|cleaning;              |         |                   |                     |
|– Thermal after-       |         |                   |                     |
|burning.               |         |                   |                     |
|Pitch use with higher  |  High   |Medium             |                     |
|melting                |         |Low – medium       |                     |
|point (HSS + VSS)      |         |                   |                     |
|Use of dry scrubbing in|         |Medium – high      |                     |
|existing HSS + VSS     |         |                   |                     |
|plants.                |         |                   |                     |
(a/) Remaining emission compared to unreduced mode.
D. Residential combustion
67. PAH emissions from residential combustion can be detected from stoves or open fireplaces especially when wood or coal is used. Households could be a significant source of PAH emissions. This is the result of the use of fireplaces and small firing installations burning solid fuels in households. In some countries the usual fuel for stoves is coal. Coal-burning stoves emit less PAH than wood-burning ones, because of their higher combustion temperatures and more consistent fuel quality.
68. Furthermore, combustion systems with optimized operation characteristics (e.g. burning rate) effectively control PAH emissions from residential combustion. Optimized combustion conditions include optimized combustion chamber design and optimized supply of air. There are several techniques which optimize combustion conditions and reduce emissions. There is a significant difference in emissions between different techniques. A modern wood-fired boiler with a water accumulation tank, representing BAT, reduces the emission by more than 90% compared to an outdated boiler without a water accumulation tank. A modern boiler has three different zones: a fireplace for the gasification of wood, a gas combustion zone with ceramics or other material which allow temperatures of some 1000°C, and a convection zone. The convection part where the water absorbs the heat should be sufficiently long and effective so that the gas temperature can be reduced from 1000°C to 250°C or less. There are also several techniques to supplement old and outdated boilers, for example with water accumulation tanks, ceramic inserts and pellet burners.
69. Optimized burning rates are accompanied by low emissions of carbon monoxide (CO), total hydrocarbons (THC) and PAHs. Setting limits (type approval regulations) on the emission of CO and THCs also affects the emission of PAHs. Low emission of CO and THCs results in low emission of PAHs. Since measuring PAH is far more expensive than measuring CO, it is more cost-effective to set a limit value for CO and THCs. Work is continuing on a proposal for a CEN standard for coal– and wood-fired boilers up to 300 kW (see table 7).
Table 7: Draft CEN standards in 1997
|Class    |       |  3  |  2  |  1   | 3  | 2  |  1  |   3   |   2   |   1   |
|         | Effect|        CO        |      THC      |     Particulates      |
|         |  (kW) |                  |               |                       |
|Manual   |  < 50 |5000 |8000 |25000 |150 |300 |2000 |150/125|180/150|200/180|
|         +-------+-----+-----+------+----+----+-----+-------+-------+-------+
|         | 50-150|2500 |5000 |12500 |100 |200 |1500 |150/125|180/150|200/180|
|         +-------+-----+-----+------+----+----+-----+-------+-------+-------+
|         | >150- |1200 |2000 |12500 |100 |200 |1500 |150/125|180/150|200/180|
|         |  300  |     |     |      |    |    |     |       |       |       |
|Automatic|  < 50 |3000 |5000 |15000 |100 |200 |1750 |150/125|180/150|200/180|
|         +-------+-----+-----+------+----+----+-----+-------+-------+-------+
|         | 50-150|2500 |4500 |12500 | 80 |150 |1250 |150/125|180/150|200/180|
|         +-------+-----+-----+------+----+----+-----+-------+-------+-------+
|         | > 150-|1200 |2000 |12500 | 80 |150 |1250 |150/125|180/150|200/180|
|         |  300  |     |     |      |    |    |     |       |       |       |
Note: Emission levels in mg/m3 at 10% O(2).
70. Emissions from residential wood combustion stoves can be reduced:
(a) For existing stoves, by public information and awareness programmes regarding proper stove operation, the use of untreated wood only, fuel preparation procedures and the correct seasoning of wood for moisture content; and
(b) For new stoves, by the application of product standards as described in the draft CEN standard (and equivalent product standards in the United States and Canada).
71. More general measures for PAH emission reduction are those related to the development of centralized systems for households and energy conservation such as improved thermal insulation to reduce energy consumption.
72. Information is summarized in table 8.
Table 8: PAH emission control for residential combustions
|  Management options   |  Emission   |Estimated|     Management risks      |
|                       |level (%)(a/)|  costs  |                           |
|Use of dried coal and  |    High     |         |                           |
|wood (dried wood is    |effectiveness|         |                           |
|wood stored for at     |             |         |                           |
|least 18-24 months).   |             |         |                           |
|Use of dried coal.     |    High     |         |                           |
|                       |effectiveness|         |                           |
|Design of heating      |     55      | Medium  |Negotiations have to be    |
|systems for solid      |             |         |held with stove            |
|fuels to provide       |             |         |manufacturers to introduce |
|optimized complete     |             |         |an approval scheme for     |
|burning conditions:    |             |         |stoves.                    |
|– Gasification zone;   |             |         |                           |
|– Combustion with      |             |         |                           |
|ceramics;              |             |         |                           |
|– Effective convection |             |         |                           |
|zone.                  |             |         |                           |
|Water accumulation     |             |         |                           |
|tank.                  |             |         |                           |
|Technical instructions |   30 – 40   |   Low   |Might be achieved also by  |
|for efficient          |             |         |vigorous public education, |
|operation.             |             |         |combined with practical    |
|                       |             |         |instructions and stove type|
|                       |             |         |regulation.                |
|Public information     |             |         |                           |
|programme concerning   |             |         |                           |
|the use of wood-       |             |         |                           |
|burning stoves.        |             |         |                           |
    (a/) Remaining emission compared to unreduced mode.
E. Wood preservation installations
73. Wood preservation with PAH-containing coal-tar products may be a major source of PAH emissions to the air. Emissions may occur during the impregnation process itself as well as during storage, handling and use of the impregnated wood in the open air.
74. The most widely used PAH-containing coal-tar products are carbolineum and creosote. Both are coal tar distillates containing PAHs for the protection of timber (wood) against biological attack.
75. PAH emissions from wood preservation, installations and storage facilities may be reduced using several approaches, implemented either separately or in combination, such as:
(a) Requirements on storage conditions to prevent pollution of soil and surface water by leached PAH and contaminated rainwater (e.g. storage sites impermeable to rainwater, roof cover, reuse of contaminated water for the impregnation process, quality demands for the material produced);
(b) Measures to reduce atmospheric emissions at impregnation plants (e.g. the hot wood should be cooled down from 90°C to 30°C at least before transport to storage sites. However, an alternative method using pressure steam under vacuum conditions to impregnate the wood with creosote should be highlighted as BAT);
(c) The optimum loading of wood preservative, which gives adequate protection to the treated wood product in situ, can be regarded as a BAT as this will reduce the demand for replacements, thereby reducing emissions from the wood preservation installations;
(d) Using wood preservation products with a lower content of those PAHs that are POPs:
– Possibly using modified creosote which is taken to be a distillation fraction boiling between 270°C and 355°C, which reduces both the emissions of the more volatile PAHs and the heavier, more toxic PAHs;
– Discouraging the use of carbolineum would also reduce PAH emissions;
(e) Evaluating and then using, as appropriate, alternatives, such as those in table 9, that minimize reliance on PAH-based products.
76. Burning of impregnated wood gives rise to PAH emissions and other harmful substances. If burning does take place, it should be done in installations with adequate abatement techniques.
Table 9: Possible alternatives to wood preservation involving PAH-based products
|Management options                             |Management risks           |
|Use of alternative materials for application in|Other environmental        |
|construction:                                  |problems have to be        |
|                                               |evaluated such as:         |
|– Sustainably produced hardwood                |– Availability of suitably |
|(riverbanks, fences, gates);                   |produced wood;             |
|– Plastics (horticulture posts);               |– Emissions caused by the  |
|                                               |production and disposal    |
|                                               |of plastics, especially    |
|                                               |PVC.                       |
|– Concrete (railway sleepers);                 |                           |
|– Replacement of artificial constructions by   |                           |
|natural                                        |                           |
|ones (such as riverbanks, fences, etc.);       |                           |
|– Use of untreated wood.                       |                           |
|There are several alterntive wood-preserving   |                           |
|techniques in development which do not inlcude |                           |
|impregnation with PAH-based products.          |                           |
The timescales for the application of limit values and best available techniques are:
(a) For new stationary sources: two years after the date of entry into force of the present Protocol;
(b) For existing stationary sources: eight years after the date of entry into force of the present Protocol. If necessary, this period may be extended for specific existing stationary sources in accordance with the amortization period provided for by national legislation.
1. Relevant definitions are provided in annex III to the present Protocol.
A. Achievable emission levels for new vehicles
2. Diesel-fuelled passenger cars
|Year                   |Reference mass|            Limit values            |
|                       |              +------------------+-----------------+
|                       |              |     Mass of      |     Mass of     |
|                       |              | hydrocarbons and |  particulates   |
|                       |              |      NO(x)       |                 |
|01. 1. 2000            |     All      |    0.56 g/km     |    0.05 g/km    |
|01. 1. 2005            |     All      |     0.3 g/km     |   0.025 g/km    |
|(indicative)           |              |                  |                 |
3. Heavy-duty vehicles
|Year/test cycle          |                   Limit values                  |
|                         +------------------------+------------------------+
|                         |  Mass of hydrocarbons  |  Mass of particulates  |
|01. 1. 2000/ESC cycle    |       0.66 g/kWh       |       0.1 g/kWh        |
|01. 1. 2000/ETC cycle    |       0.85 g/kWh       |       0.16 g/kWh       |
4. Off-road engines
    Step 1 (reference: ECE regulation No. 96) */
|Net power (P) (kW)       |  Mass of hydrocarbons  |  Mass of particulates  |
|P >= 130                 |       1.3 g/kWh        |       0.54 g/kWh       |
|75 <= P < 130            |       1.3 g/kWh        |       0.70 g/kWh       |
|37 <= P < 75             |       1.3 g/kWh        |       0.85 g/kWh       |
     */ "uniform provisions concerning the approval of compression ignition
(C.I.) engines to be installed in agricultural and forestry tractors with 
regard to the emissions of pollutants by the engine". The regulation came 
into force on 15 December 1995 and its amendments came into force on 5 
March 1997.
    Step 2
|Net power (P) (kW)|Mass of hydrocarbons|Mass of particulates|
|0 <= P < 18       |                    |                    |
|18 <= P < 37      |      1.5 g/kWh     |      0.8 g/kWh     |
|37 <= P < 75      |      1.3 g/kWh     |      0.4 g/kWh     |
|75 <= P < 130     |      1.0 g/KWh     |      0.3 g/kWh     |
|130 <= P < 560    |      1.0 g/kWh     |      0.2 g/kWh     |
B. Fuel parameters
5. Diesel fuel
|Parameter      |    Unit     |            Limits            |  Test method |
|               |             +---------------+--------------+              |
|               |             | Minimum value |Maximum value |              |
|               |             | (2000/2005)*/ |(2000/2005)*/ |              |
|Cetane number  |             |    51/N.S.    |      -       |   ISO 5165   |
|Density at 15  |    kg/m3    |       -       |   845/N.S.   |   ISO 3675   |
|°C             |             |               |              |              |
|Evaporated 95% |     °C      |       -       |  360 /N.S.   |   ISO 3405   |
|PAH            |    mass%    |       -       |   11/N.S.    |   prIP 391   |
|Sulphur        |     ppm     |       -       |  350/50 **/  |   ISO 14956  |
    N.S.: Not specified.
    */ 1 January of year specified.
    **/        Indicative value.
6. In some countries, 1,2-dibromomethane in combination with 1,2-dichloromethane is used as a scavenger in leaded petrol. Moreover, PCDD/F are formed during the combustion process in the engine. The application of three-way catalytic converters for cars will require the use of unleaded fuel. The addition of scavengers and other halogenated compounds to petrol and other fuels and to lubricants should be avoided as far as possible.
7. Table 1 summarizes measures for PCDD/F emission control from the exhaust from road transport motor vehicles.
Table 1: PCDD/F emission control for the exhaust from road transport motor vehicles
|           Management options          |          Management risks          |
|Avoiding adding halogenated compounds  |                                    |
|to fuels                               |                                    |
|                                       |Halogenated scavengers will be      |
|–1,2-dichloromethane                   |phased out as the market for leaded |
|–1,2-dichloromethane and corresponding |petrol shrinks because of the       |
|bromo compounds as scavengers in leaded|increasing use of closed-loop       |
|fuels for spark ignition engines (Bromo|three-way catalytic converters with |
|compounds may lead to the formation of |spark ignition engines              |
|brominated dioxins or furans.)         |                                    |
|                                       |                                    |
|Avoiding halogenated additives in fuels|                                    |
|and lubricants.                        |                                    |
A. POP emissions from motor vehicles
8. POP emissions from motor vehicles occur as particle-bound PAHs emitted from diesel-fuelled vehicles. To a minor extent PAHs are also emitted by petrol-fuelled vehicles.
9. Lubrication oil and fuels may contain halogenated compounds as a result of additives or the production process. These compounds may be transformed during combustion into PCDD/F and subsequently emitted with the exhaust gases.
B. Inspection and maintenance
10. For diesel-fuelled mobile sources, the effectiveness of the control of emissions of PAHs may be ensured through programmes to test the mobile sources periodically for particulate emissions, opacity during free acceleration, or equivalent methods.
11. For petrol-fuelled mobile sources, the effectiveness of the control of emissions of PAHs (in addition to other exhaust components) may be ensured through programmes to test periodically the fuel metering and the efficiency of the catalytic converter.
C. Techniques to control PAH emissions from diesel– and petrol-fuelled motor vehicles
1. General aspects of control technologies
12. It is important to ensure that vehicles are designed to meet emission standards while in service. This can be done by ensuring conformity of production, lifetime durability, warranty of emission-control components, and recall of defective vehicles. For vehicles in use, continued emission control performance can be ensured by an effective inspection and maintenance programme.
2. Technical measures for emission control
13. The following measures to control PAH emissions are important:
(a) Fuel-quality specifications and engine modifications to control emissions before they are formed (primary measures); and
(b) Addition of exhaust treatment systems, e.g. oxidizing catalysts or particle traps (secondary measures).
(a) Diesel engines
14. Diesel-fuel modification can yield two benefits: a lower sulphur content reduces emissions of particles and increases the conversion efficiency of oxidizing catalysts, and the reduction in di– and tri-aromatic compounds reduces the formation and emission of PAHs.
15. A primary measure to reduce emissions is to modify the engine to achieve more complete combustion. Many different modifications are in use. In general, vehicle exhaust composition is influenced by changes in combustion chamber design and by higher fuel injection pressures. At present, most diesel engines rely on mechanical engine control systems. Newer engines increasingly use computerized electronic control systems with greater potential flexibility in controlling emissions. Another technology to control emissions is the combined technology of turbocharging and intercooling. This system is successful in reducing NOx as well as increasing fuel economy and power output. For heavy– and light-duty engines the use of intake manifold tuning is also a possibility.
16. Controlling the lubricating oil is important to reduce particulate matter (PM), as 10 to 50% of particulate matter is formed from engine oil. Oil consumption can be reduced by improved engine manufacturing specifications and improved engine seals.
17. Secondary measures to control emissions are additions of exhaust treatment systems. In general, for diesel engines the use of an oxidizing catalyst in combination with a particulate filter has been shown to be effective in reducing PAH emissions. A particle trap oxidizer is being evaluated. It is located in the exhaust system to trap PM and can provide some regeneration of the filter by burning the collected PM, through electrical heating of the system or some other means of regeneration. For proper regeneration of passive system traps during normal operation, a burner-assisted regeneration system or the use of additives is required.
(b) Petrol engines
18. PAH-reduction measures for petrol-fuelled engines are primarily based on the use of a closed-loop three-way catalytic converter, which reduces PAHs as part of the HC emission reductions.
19. Improved cold start behaviour reduces organic emissions in general and PAHs in particular (for instance start-up catalysts, improved fuel evaporation/atomization, heated catalysts).
20. Table 2 summarizes measures for PAH emission control from the exhaust from road transport motor vehicles.
Table 2: PAH emission control for the exhaust from road transport motor vehicles
|           Management options           |  Emission |   Management risks   |
|                                        | level (%) |                      |
|Spark ignition engines:                 |           |                      |
|– Closed-loop three-way catalytic       |   10-20   |Availability of       |
|converter,                              |           |unleaded petrol.      |
|– Catalysts for reducing cold start     |    5-15   |Commercially          |
|emissions.                              |           |available in some     |
|                                        |           |countries.            |
|Fuel for spark ignition engines:        |           |Availability of       |
|                                        |           |refinery capacity.    |
|– Reduction of armoatics,               |           |                      |
|– Reduction of sulphur.                 |           |                      |
|Diesel engines:                         |           |                      |
|– Oxidizing catalyst,                   |   20-70   |                      |
|– Trap oxidizer/particulate filter.     |           |                      |
|Diesel fuel modification:               |           |Availability of       |
|                                        |           |refinery capacity.    |
|– Reduction of sulphut to reduce        |           |                      |
|particulate emissions.                  |           |                      |
|Improvement of diesel engine            |           |Existing              |
|specifications:                         |           |technologies.         |
|– Electronic control system, injection  |           |                      |
|rate adjustment and high-pressure fuel  |           |                      |
|injection,                              |           |                      |
|– Turbocharging and intercooling,       |           |                      |
|– Exhaust gas recirculation.            |           |                      |
Installations or parts of installations for research, development and the testing of new products are not covered by this list. A more complete description of the categories may be found in annex V.
|Category|                   Description of the category                    |
|    1   |Incineration, including co-incineration, of municipal, hazardous  |
|        |or medical waste, or of sewage sludge.                            |
|    2   |Sinter plants.                                                    |
|    3   |Primary and secondary production of copper.                       |
|    4   |Production of steel.                                              |
|    5   |Smelting plants in the secondary aluminium industry.              |
|    6   |Combustion of fossil fuels in utility and industrial boilers with |
|        |a thermal capacity above 50 MW(th).                               |
|    7   |Residential combustion.                                           |
|    8   |Firing installations for wood with a thermal capacity below 50 MW |
|        |(th).                                                             |
|    9   |Coke production.                                                  |
|   10   |Anode production.                                                 |
|   11   |Aluminium production using the Soederberg process.                |
|   12   |Wood preservation installations, except for a Party for which     |
|        |this category does not make a significant contribution to its     |
|        |total emissions of PAH (as defined in annex III)                  |
Pogodbenice, ki
so odločene izvajati Konvencijo o onesnaževanju zraka na velike razdalje preko meja,
priznavajo, da se emisije številnih obstojnih organskih onesnaževal prenašajo čez mednarodne meje in se usedajo v Evropi, Severni Ameriki in na Arktiki, daleč stran od kraja nastanka, in da je ozračje glavno sredstvo prenosa,
se zavedajo, da se obstojna organska onesnaževala upirajo razgradnji v naravnih razmerah in da se povezujejo s škodljivimi vplivi na zdravje ljudi in okolje,
so zaskrbljene, ker se lahko vsebnost obstojnih organskih onesnaževal v živih organizmih na višjih trofičnih ravneh zvišuje in doseže koncentracije, ki bi utegnile vplivati na zdravje živali, rastlin in ljudi, ki so jim izpostavljeni,
priznavajo, da so arktični ekosistemi in predvsem avtohtoni prebivalci, ki se preživljajo z arktičnimi ribami in sesalci, še posebej ogroženi zaradi biomagnifikacije obstojnih organskih onesnaževal,
se zavedajo, da bodo ukrepi za nadzor nad emisijami obstojnih organskih onesnaževal pripomogli tudi k varstvu okolja in zdravja ljudi zunaj območij, za katera je pristojna Ekonomska komisija Združenih narodov za Evropo, vključno z arktičnimi in mednarodnimi vodami,
so odločene, da bodo ob upoštevanju previdnostnega pristopa, kot je določeno v 15. načelu Deklaracije o okolju in razvoju iz Ria, sprejele ukrepe za napovedovanje, preprečevanje ali zmanjševanje emisij obstojnih organskih onesnaževal na najmanjšo možno mero,
ponovno potrjujejo, da imajo države v skladu z Ustanovno listino Združenih narodov in načeli mednarodnega prava suvereno pravico do izkoriščanja lastnih virov v skladu s svojimi okoljskimi in razvojnimi politikami ter obveznost zagotoviti, da dejavnosti v okviru njihove državne jurisdikcije ali nadzora ne povzročajo škode okolju drugih držav ali območij zunaj meja državne jurisdikcije,
se zavedajo potrebe po globalnih ukrepih v zvezi z obstojnimi organskimi onesnaževali in se sklicujejo na vlogo regionalnih sporazumov pri zmanjševanju globalnega čezmejnega onesnaževanja zraka, predvideno v 9. poglavju Agende 21, in zlasti Ekonomske komisije Združenih narodov za Evropo pri delitvi njenih regionalnih izkušenj z drugimi regijami sveta,
priznavajo obstoj podregionalne, regionalne in globalne ureditve, vključno z mednarodnimi akti, ki urejajo ravnanje z nevarnimi odpadki, njihovo prehajanje čez meje in odstranjevanje, zlasti Baselsko konvencijo o nadzoru prehoda nevarnih odpadkov preko meja in njihovega odstranjevanja,
menijo, da so prevladujoči viri onesnaževanja zraka, ki pripomorejo h kopičenju obstojnih organskih onesnaževal, uporaba nekaterih pesticidov, izdelava in uporaba nekaterih kemikalij ter nenamerno nastajanje nekaterih snovi pri sežiganju odpadkov, zgorevanju, proizvodnji kovin in premični viri,
se zavedajo, da so na voljo načini in postopki, da bi zmanjšali emisije obstojnih organskih onesnaževal v zrak,
se zavedajo potrebe po stroškovno učinkovitem regionalnem pristopu v boju proti onesnaževanju zraka,
upoštevajo pomemben prispevek zasebnega in nevladnega sektorja k poznavanju učinkov, povezanih z obstojnimi organskimi onesnaževali, razpoložljivih nadomestnih rešitev in načinov zmanjševanja onesnaževanja ter njuno vlogo pri zmanjševanju emisij obstojnih organskih onesnaževal,
upoštevajo, da sprejeti ukrepi za zmanjšanje emisij obstojnih organskih onesnaževal ne bi smeli biti sredstvo za samovoljno ali neupravičeno diskriminacijo ali prikrito omejevanje mednarodne konkurenčnosti in trgovanja,
upoštevajo obstoječe znanstvene in tehnične podatke o emisijah, procesih v ozračju in učinkih obstojnih organskih onesnaževal na zdravje ljudi in okolje kot tudi o stroških njihovega zmanjševanja ter priznavajo potrebo po nadaljevanju znanstvenega in tehničnega sodelovanja, da bi se še izboljšalo razumevanje teh vprašanj,
priznavajo ukrepe glede obstojnih organskih onesnaževal, ki so jih nekatere pogodbenice že sprejele na državni ravni in/ali v skladu z drugimi mednarodnimi konvencijami,
so se sporazumele:
1. člen
V tem protokolu:
1. »konvencija« pomeni Konvencijo o onesnaževanju zraka na velike razdalje preko meja, sprejeto v Ženevi 13. novembra 1979;
2. »EMEP« pomeni program sodelovanja za spremljanje in oceno onesnaževanja zraka na velike razdalje v Evropi;
3. »izvršni organ« pomeni izvršni organ konvencije, ustanovljen v skladu s prvim odstavkom 10. člena konvencije;
4. »komisija« pomeni Ekonomsko komisijo Združenih narodov za Evropo;
5. »pogodbenice« pomenijo pogodbenice tega protokola, razen če sobesedilo ne zahteva drugače;
6. »zemljepisno območje EMEP« pomeni območje, opredeljeno v četrtem odstavku 1. člena Protokola h Konvenciji o onesnaževanju zraka na velike razdalje preko meja iz leta 1979 o dolgoročnem financiranju programa sodelovanja za spremljanje in oceno onesnaževanja zraka na velike razdalje v Evropi (program EMEP), sprejetega v Ženevi 28. septembra 1984;
7. »obstojna organska onesnaževala« pomenijo organske snovi, ki: (i) so strupene; (ii) so obstojne; (iii) se kopičijo v živih organizmih; (iv) prehajajo čez meje na velike razdalje v ozračju in se usedajo; (v) lahko zelo škodljivo učinkujejo na zdravje ljudi ali okolje blizu svojega vira in daleč stran od njega;
8. »snov« pomeni eno samo kemijsko vrsto ali več kemijskih vrst, ki sestavljajo posebno skupino, ker a) imajo podobne lastnosti in se skupaj izpuščajo v okolje, ali (b) sestavljajo mešanico, ki se običajno trži kot en sam izdelek;
9. »emisija« pomeni izpuščanje snovi v ozračje iz točkovnih ali razpršenih virov;
10. »nepremični vir« pomeni vsako stavbo, zgradbo, obrat, napravo ali opremo, ki je nepremična in neposredno ali posredno izpušča ali bi lahko izpuščala obstojna organska onesnaževala v ozračje;
11. »kategorija večjih nepremičnih virov » pomeni vsako kategorijo nepremičnih virov iz priloge VIII;
12. »nov nepremični vir« pomeni vsak nepremični vir, katerega gradnja ali bistvena sprememba se je začela po poteku dveh let od datuma začetka veljavnosti: (i) tega protokola ali (ii) spremembe prilog III ali VIII, če za nepremični vir začnejo veljati določbe tega protokola šele s tako spremembo. O tem, ali je sprememba bistvena, odločijo pristojni državni organi ob upoštevanju dejavnikov, kot so okoljske koristi spremembe.
2. člen
Cilj tega protokola je nadzirati, zmanjševati ali odpravljati izpuste, emisije in izgube obstojnih organskih onesnaževal.
3. člen
1. Razen kadar gre za posebno izjemo v skladu s 4. členom, vsaka pogodbenica sprejme učinkovite ukrepe, da bi:
(a) opustila proizvodnjo in uporabo snovi iz priloge I v skladu s tam navedenimi zahtevami glede izvajanja;
(b) (i) zagotovila, da se tedaj, kadar se snovi iz priloge I uničujejo ali odstranjujejo, to uničevanje ali odstranjevanje opravlja na način, sprejemljiv za okolje, ob upoštevanju ustrezne podregionalne, regionalne in globalne ureditve ravnanja z nevarnimi odpadki in njihovega odstranjevanja, predvsem Baselske konvencije o nadzoru prehoda nevarnih odpadkov preko meja in njihovega odstranjevanja;
(ii) skušala zagotoviti, da se odstranjevanje snovi iz priloge I izvaja na domačem ozemlju, pri čemer je treba upoštevati ustrezne okoljske zahteve;
(iii) zagotovila, da se čezmejni prehod snovi iz priloge I opravlja na način, sprejemljiv za okolje, ob upoštevanju ustrezne podregionalne, regionalne in globalne ureditve čezmejnega prehoda nevarnih odpadkov, predvsem Baselske konvencije o nadzoru prehoda nevarnih odpadkov preko meja in njihovega odstranjevanja;
(c) omejila snovi iz priloge II na opisane vrste uporabe v skladu s tam navedenimi zahtevami glede izvajanja.
2. Zahteve iz pododstvaka (b) prvega odstavka začnejo veljati za vsako snov z datumom, s katerim se proizvodnja ali uporaba te snovi opusti, kar se zgodi pozneje.
3. Za snovi iz prilog I, II ali III bi morala vsaka pogodbenica izdelati ustrezne strategije za prepoznavanje izdelkov, ki se še vedno uporabljajo, in odpadkov, ki vsebujejo tovrstne snovi, ter storiti vse potrebno, da zagotovi, da se takšni odpadki in izdelki, potem ko postanejo odpadki, uničijo ali odstranijo na način, sprejemljiv za okolje.
4. Za namene prvega do tretjega odstavka se izrazi odpadek, odstranjevanje in sprejemljiv za okolje razlagajo na način, ki je v skladu z uporabo teh izrazov v Baselski konvenciji o nadzoru prehoda nevarnih odpadkov preko meja in njihovega odstranjevanja.
5. Vsaka pogodbenica:
(a) zmanjša svoje skupne letne emisije vsake snovi iz priloge III glede na raven emisije v referenčnem letu, določenem v skladu s to prilogo, s sprejetjem učinkovitih ukrepov, ki so primerni za njene posebne okoliščine;
(b) najpozneje v časovnem okviru iz priloge VI uveljavi:
(i) najboljše razpoložljive tehnike ob upoštevanju priloge V za vsak nov nepremični vir v okviru kategorije večjih nepremičnih virov, za katere priloga V navaja najboljše razpoložljive tehnike;
(ii) mejne vrednosti, ki so vsaj tako stroge kot tiste iz priloge IV, za vsak nov nepremični vir v kategoriji iz te priloge ob upoštevanju priloge V. Pogodbenica lahko namesto tega uporabi drugačne strategije za zmanjševanje emisij, s katerimi se dosežejo enakovredne skupne ravni emisij;
(iii) najboljše razpoložljive tehnike ob upoštevanju priloge V za vsak obstoječ nepremični vir v okviru kategorije večjih nepremičnih virov, za katere priloga V navaja najboljše razpoložljive tehnike, če je to tehnično in ekonomsko izvedljivo. Pogodbenica lahko namesto tega uporablja drugačne strategije za zmanjševanje emisij, s katerimi se doseže enakovredno skupno zmanjševanje emisij;
(iv) mejne vrednosti, ki so vsaj tako stroge kot tiste iz priloge IV, za vsak obstoječ nepremični vir v kategoriji iz te priloge, če je to tehnično in ekonomsko izvedljivo, ob upoštevanju priloge V. Pogodbenica lahko namesto tega uporablja drugačne strategije za zmanjševanje emisij, s katerimi se doseže enakovredno skupno zmanjševanje emisij;
(v) učinkovite ukrepe za nadzor nad emisijami iz premičnih virov ob upoštevanju priloge VII.
6. Pri malih kuriščih se obveznosti, določene v točkah (i) in (ii) pododstavka (b) petega odstavka, nanašajo na vse nepremične vire skupaj v tej kategoriji.
7. Če pogodbenica po upoštevanju pododstavka (b) petega odstavka ne more izpolnjevati zahtev iz pododstavka (a) petega odstavka glede snovi iz priloge III, je oproščena obveznosti iz pododstavka (a) petega odstavka glede te snovi.
8. Vsaka pogodbenica pripravlja in dopolnjuje evidence emisij za snovi iz priloge III ter zbira razpoložljive podatke o proizvodnji in prodaji snovi iz prilog I in II; pogodbenice na zemljepisnem območju programa EMEP uporabljajo vsaj metodologije ter prostorsko in časovno ločljivost, ki jih je določil upravni organ programa EMEP, pogodbenice zunaj zemljepisnega območja programa EMEP pa uporabljajo kot smernice metodologije, razvite z delovnim načrtom izvršnega organa. O teh podatkih poroča v skladu z zahtevami glede poročanja iz 9. člena.
4. člen
1. Prvi odstavek 3. člena ne velja za količine snovi, uporabljene za laboratorijske raziskave ali kot referenčni standard.
2. Pogodbenica lahko za določene snovi odobri izjemo od pododstavkov (a) in (c) prvega odstavka 3. člena pod pogojem, da se ta izjema ne odobri ali se ne uporablja na način, ki bi bil v nasprotju s cilji tega protokola, ter samo za te namene in pod naslednjimi pogoji:
(a) za raziskave, ki niso omenjene v prvem odstavku tega člena, s tem da:
(i) se pričakuje, da med predlagano uporabo in poznejšim odstranjevanjem nobena večja količina snovi ne bi prišla v okolje;
(ii) pogodbenica oceni in odobri cilje in parametre takšne raziskave in
(iii) ob večjem izpustu snovi v okolje izjema nemudoma preneha veljati, da se sprejmejo ustrezni ukrepi za zmanjšanje učinkov izpusta in da se pred nadaljevanjem raziskave oceni učinkovitost takih ukrepov;
(b) za obvladovanje izrednih razmer v zvezi z zdravjem ljudi:
(i) če pogodbenica nima na voljo ustreznih drugih ukrepov za ureditev razmer;
(ii) če so sprejeti ukrepi sorazmerni z obsegom in težo izrednih razmer;
(iii) s tem da se sprejmejo ustrezni ukrepi za varovanje zdravja ljudi in okolja ter da se zagotovi, da snov ne bo uporabljena zunaj zemljepisnega območja, na katerem so izredne razmere;
(iv) s tem da se izjema odobri za obdobje, ki ne presega trajanja izrednih razmer, in
(v) s tem da po prenehanju izrednih razmer za vse preostale količine snovi veljajo določbe pododstavka (b) prvega odstavka 3. člena;
(c) za uporabo v manjšem obsegu, ki jo pogodbenica šteje za nujno:
(i) s tem da se izjema odobri za največ pet let;
(ii) če pred tem ni odobrila izjeme po tem členu;
(iii) če za predlagano uporabo ni ustreznih nadomestnih rešitev;
(iv) če je pogodbenica ocenila emisije snovi, ki bi nastale kot posledica izjeme, in njihov prispevek k skupnim emisijam snovi pogodbenic;
(v) s tem da se sprejmejo ustrezni previdnostni ukrepi, s katerimi se zagotovi, da bodo emisije v okolje čim manjše, in
(vi) s tem da po prenehanju veljavnosti izjeme za vse preostale količine snovi veljajo določbe pododstavka (b) prvega odstavka 3. člena.
3. Vsaka pogodbenica najpozneje v devetdesetih dneh po tem, ko je bila izjema odobrena v skladu z drugim odstavkom tega člena, pošlje sekretariatu najmanj naslednje podatke:
(a) kemijsko ime snovi, za katero velja izjema;
(b) namen, za katerega je bila izjema odobrena;
(c) pogoje, pod katerimi je bila izjema odobrena;
(d) za koliko časa je bila izjema odobrena;
(e) za katere osebe ali organizacije izjema velja in
(f) za izjemo, odobreno v skladu s pododstavkoma (a) in (c) drugega odstavka tega člena, ocenjene emisije snovi, ki so posledica izjeme, in oceno njihovega prispevka k skupnim emisijam snovi pogodbenic.
4. Sekretariat da vsem pogodbenicam na voljo podatke, ki jih je prejel, v skladu s tretjim odstavkom tega člena.
5. člen
Pogodbenice v skladu s svojimi zakoni, predpisi in prakso zagotovijo ustrezne možnosti za lažjo izmenjavo informacij in tehnologije, namenjene zmanjševanju nastajanja obstojnih organskih onesnaževal in njihovih emisij, ter za pripravo stroškovno učinkovitih nadomestnih rešitev med drugim s spodbujanjem:
(a) stikov in sodelovanja med ustreznimi organizacijami in posamezniki v zasebnem in javnem sektorju, ki lahko zagotovijo tehnologijo, projektiranje in inženiring, opremo ali finančna sredstva;
(b) izmenjave in dostopa do informacij o pripravi in uporabi nadomestnih rešitev za obstojna organska onesnaževala ter o oceni tveganj, ki jih takšne nadomestne rešitve pomenijo za zdravje ljudi in okolje, ter izmenjave in dostopa do informacij o ekonomskih in družbenih stroških takšnih nadomestnih rešitev;
(c) oblikovanja in rednega posodabljanja seznamov njihovih pristojnih organov, ki se ukvarjajo s podobnimi dejavnostmi v drugih mednarodnih forumih;
(d) izmenjave informacij o dejavnostih, ki potekajo v drugih mednarodnih forumih.
6. člen
Pogodbenice v skladu s svojimi zakoni, predpisi in prakso spodbujajo obveščanje široke javnosti, vključno s posamezniki, ki neposredno uporabljajo obstojna organska onesnaževala. Informacije lahko med drugim vključujejo:
(a) informacije o oceni tveganja in nevarnosti, vključno z označevanjem;
(b) informacije o zmanjševanju tveganja;
(c) informacije, s katerimi se spodbuja odstranjevanje obstojnih organskih onesnaževal ali zmanjševanje njihove uporabe, vključno z informacijami – kadar je to primerno – o celovitem zatiranju škodljivcev, celovitem ravnanju s poljščinami ter o ekonomskih in družbenih učinkih takšnega odstranjevanja ali zmanjšanja, ter
(d) informacije o nadomestnih rešitvah za obstojna organska onesnaževala in oceni tveganj, ki jih takšne nadomestne rešitve pomenijo za zdravje ljudi in okolje, ter informacije o ekonomskih in družbenih učinkih takšnih nadomestnih rešitev.
7. člen
1. Vsaka pogodbenica najpozneje v šestih mesecih od dneva začetka veljavnosti tega protokola pripravi strategije, politike in programe za izpolnitev svojih obveznosti po tem protokolu.
2. Vsaka pogodbenica:
(a) spodbuja uporabo ekonomsko izvedljivih, za okolje sprejemljivih načinov ravnanja, vključno z najboljšimi okoljskimi praksami, glede vseh vidikov uporabe, proizvodnje, izpuščanja, predelave, distribucije snovi, na katere se nanaša ta protokol, ter industrijskih izdelkov, mešanic ali raztopin, ki vsebujejo takšne snovi, ravnanja z njimi, njihovega prevoza in ponovne predelave;
(b) spodbuja izvajanje drugih programov ravnanja za zmanjševanje emisij obstojnih organskih onesnaževal, vključno s prostovoljnimi programi in uporabo ekonomskih instrumentov;
(c) prouči možnosti sprejetja ustreznih dodatnih politik in ukrepov glede na svoje razmere, kar lahko vključuje načine, ki niso posebej urejeni s predpisi;
(d) si odločno prizadeva, če je to ekonomsko izvedljivo, zmanjšati ravni snovi, na katere se nanaša ta protokol, in jih kot onesnaževala vsebujejo druge snovi, kemični ali industrijski izdelki, takoj ko je ugotovljena pomembnost vira;
(e) v svojih programih za ocenjevanje snovi upošteva lastnosti, navedene v prvem odstavku odločbe izvršnega organa št. 1998/2 o informacijah, ki jih je treba predložiti, ter o postopkih za uvrščanje snovi v priloge I, II ali III, vključno z vsemi spremembami.
3. Pogodbenice lahko sprejmejo strožje ukrepe od tistih, ki jih zahteva ta protokol.
8. člen
Pogodbenice spodbujajo raziskave, razvoj, spremljanje stanja in sodelovanje, kar se med drugim nanaša na:
(a) emisije, prenos na velike razdalje in stopnje usedanja in njihove modele, obstoječe količine v živem in neživem okolju, oblikovanje postopkov za usklajevanje ustreznih metodologij;
(b) poti onesnaževal in evidence v reprezentativnih ekosistemih;
(c) vplive na zdravje ljudi in okolje, vključno z ugotavljanjem njihovega obsega;
(d) najboljše razpoložljive tehnike in postopke, vključno s postopki v kmetijstvu, ter tehnike in postopke za nadzor nad emisijami, ki jih pogodbenice trenutno uporabljajo ali razvijajo;
(e) metodologije, ki omogočajo upoštevanje družbeno-ekonomskih dejavnikov pri vrednotenju nadomestnih strategij nadzora;
(f) pristop na podlagi učinkov, ki vključuje ustrezne informacije, tudi informacije, pridobljene v skladu s pododstavki od (a) do (e) tega člena, o izmerjenih ali modeliranih okoljskih ravneh, poteh in vplivih na zdravje ljudi in okolje, z namenom oblikovati prihodnje strategije nadzora, ki bi upoštevale tudi gospodarske in tehnološke dejavnike;
(g) metode za ocenjevanje nacionalnih emisij in predvidevanje prihodnjih emisij posameznih obstojnih organskih onesnaževal ter za ugotavljanje, kako se takšne ocene in predvidevanja lahko uporabijo za strukturiranje prihodnjih obveznosti;
(h) ravni snovi, na katere se nanaša ta protokol in ki jih kot onesnaževala vsebujejo druge snovi, kemični ali industrijski izdelki, ter višine teh ravni pri prenosu na velike razdalje kot tudi postopke za zmanjševanje ravni teh onesnaževal ter poleg tega ravni obstojnih organskih onesnaževal, ki nastajajo v življenjskem ciklusu lesa, zaščitenega s pentaklorofenolom.
Prednost bi morale imeti raziskave snovi, za katere se najverjetneje zdi, da se nanje nanašajo postopki, določeni v šestem odstavku 14. člena.
9. člen
1. V skladu s svojo zakonodajo, ki ureja zaupnost poslovnih informacij:
(a) vsaka pogodbenica prek izvršnega sekretarja komisije v rednih časovnih presledkih, ki jih določijo pogodbenice na zasedanju izvršnega organa, poroča o sprejetih ukrepih za izvajanje tega protokola;
(b) vsaka pogodbenica na zemljepisnem območju programa EMEP prek izvršnega sekretarja komisije v rednih časovnih presledkih, ki jih določi upravni organ programa EMEP in potrdijo pogodbenice na zasedanju izvršnega organa, poroča EMEP-u o ravneh emisij obstojnih organskih onesnaževal, pri čemer uporablja najmanj metodologije ter časovno in prostorsko specifikacijo, kot to določi upravni organ programa EMEP. Pogodbenice zunaj zemljepisnega območja programa EMEP zagotovijo izvršnemu organu na njegovo zahtevo podobne informacije. Vsaka pogodbenica prav tako zagotovi informacije o ravneh emisij snovi, navedenih v prilogi III, za referenčno leto iz te priloge.
2. Informacije, ki se pošiljajo v skladu s pododstavkom (a) prvega odstavka tega člena, morajo biti v skladu s sklepom, ki ureja obliko in vsebino ter ga pogodbenice sprejmejo na zasedanju izvršnega organa. Določila tega sklepa se po potrebi pregledajo, da se ugotovijo morebitni dodatni elementi v zvezi z obliko ali vsebino informacij, ki se vključujejo v poročila.
3. EMEP pošlje podatke o prenosu obstojnih organskih onesnaževal na velike razdalje in njihovem usedanju dovolj zgodaj pred vsakim letnim zasedanjem izvršnega organa.
10. člen
1. Pogodbenice na zasedanjih izvršnega organa v skladu s pododstavkom (a) drugega odstavka 10. člena konvencije pregledajo informacije, ki jih predložijo pogodbenice, program EMEP in druga pomožna telesa, ter poročila izvedbenega odbora iz 11. člena tega protokola.
2. Pogodbenice na zasedanjih izvršnega organa spremljajo napredek, dosežen pri izpolnjevanju obveznosti, določenih v tem protokolu.
3. Pogodbenice na zasedanjih izvršnega organa pregledajo, ali so obveznosti, določene v tem protokolu, zadostne in učinkovite. Pri takih pregledih upoštevajo najboljše dostopne znanstvene podatke o vplivih usedanja obstojnih organskih onesnaževal, ocene tehnološkega razvoja, spremembe gospodarskih razmer in izpolnjevanje obveznosti glede ravni emisij. Postopke, metode in časovni razpored takih pregledov pogodbenice določijo na zasedanju izvršnega organa. Prvi tak pregled se opravi najpozneje v treh letih po začetku veljavnosti tega protokola.
11. člen
Izpolnjevanje obveznosti vsake pogodbenice po tem protokolom se redno pregleduje. Te preglede opravlja izvedbeni odbor, ki ga je ustanovil izvršni organ na svojem petnajstem zasedanju s sklepom 1997/2, in poroča pogodbenicam na zasedanju izvršnega organa v skladu z določili priloge k temu sklepu, vključno z vsemi njegovimi spremembami.
12. člen
1. Pri sporu med dvema ali več pogodbenicami v zvezi z razlago ali uporabo tega protokola si pogodbenice prizadevajo rešiti spor s pogajanji ali na kateri koli drug miren način po svoji izbiri. Stranke v sporu o njem obvestijo izvršni organ.
2. Ob ratifikaciji, sprejetju, odobritvi tega protokola ali pristopu k njemu ali kadar koli po tem lahko pogodbenica, ki ni organizacija za regionalno gospodarsko povezovanje, v pisnem dokumentu, ki ga predloži depozitarju, izjavi, da ob vsakem sporu v zvezi z razlago ali uporabo protokola s katero koli pogodbenico, ki sprejme enako obveznost, priznava enega ali oba od naslednjih načinov reševanja sporov kot dejansko obvezna in brez posebnega sporazuma:
(a) predložitev spora Meddržavnemu sodišču;
(b) arbitražo v skladu s postopki, ki jih pogodbenice, takoj ko je to mogoče, sprejmejo v obliki priloge o arbitraži na zasedanju izvršnega organa.
Pogodbenica, ki je organizacija za regionalna gospodarsko povezovanje, lahko da izjavo z enakim učinkom v zvezi z arbitražo v skladu s postopki iz pododstavka (b) tega odstavka.
3. Izjava, dana po drugem odstavku tega člena, velja, dokler ne preneha veljati v skladu s svojimi določili ali dokler ne minejo trije meseci od deponiranja pisnega obvestila o njenem preklicu pri depozitarju.
4. Nova izjava, obvestilo o preklicu ali prenehanje veljavnosti izjave v nobenem primeru ne vpliva na že začete postopke pred Meddržavnim sodiščem ali arbitražnim sodiščem, razen če se stranke v sporu ne dogovorijo drugače.
5. Če dvanajst mesecev po tem, ko je ena pogodbenica uradno obvestila drugo, da sta v sporu, vpletenima pogodbenicama ni uspelo rešiti spora na katerega od načinov iz prvega odstavka tega člena, se spor na zahtevo katere koli vpletene stranke rešuje s spravo, kar pa ne velja, če sta stranki v sporu sprejeli enak način reševanja sporov skladno z drugim odstavkom tega člena.
6. Za namen petega odstavka tega člena se ustanovi spravna komisija. Vsaka vpletena pogodbenica ali skupina pogodbenic, če imajo v postopku sprave enak interes, imenuje v komisijo enako število članov, tako imenovani člani pa skupaj izberejo predsedujočega Komisija sprejme priporočilo, ki ga pogodbenice upoštevajo v dobri veri.
13. člen
Priloge tega protokola so njegov sestavni del. Prilogi V in VII imata naravo priporočila.
14. člen
1. Vsaka pogodbenica lahko predlaga spremembe tega protokola.
2. Predlagane spremembe se v pisni obliki predložijo izvršnemu sekretarju komisije, ki jih sporoči vsem pogodbenicam. Pogodbenice razpravljajo o predlaganih spremembah na naslednjem zasedanju izvršnega organa pod pogojem, da izvršni sekretar pošlje predloge pogodbenicam najmanj devetdeset dni pred zasedanjem.
3. Spremembe tega protokola in njegovih prilog od I do IV, VI in VIII se sprejmejo s konsenzom pogodbenic, prisotnih na zasedanju izvršnega organa, za pogodbenice, ki so jih sprejele, pa začnejo veljati devetdeseti dan po datumu, ko dve tretjini pogodbenic deponirata listine o sprejetju pri depozitarju. Za vsako drugo pogodbenico začnejo spremembe veljati devetdeseti dan po datumu, ko ta pogodbenica deponira listino o sprejetju.
4. Spremembe prilog V in VII se sprejmejo s konsenzom pogodbenic, prisotnih na zasedanju izvršnega organa. Po preteku devetdesetih dni po datumu, ko izvršni sekretar komisije o spremembi obvesti vse pogodbenice, začne sprememba katere koli od teh prilog veljati za pogodbenice, ki depozitarju ne pošljejo uradnega obvestila v skladu z določbami petega odstavka tega člena, če najmanj šestnajst pogodbenic ni poslalo takega uradnega obvestila.
5. Vsaka pogodbenica, ki ne more odobriti spremembe priloge V ali VII, o tem pisno uradno obvesti depozitarja v devetdesetih dneh po datumu obvestila o sprejetju spremembe. Depozitar o vsakem takem prejetem uradnem obvestilu nemudoma uradno obvesti vse pogodbenice. Pogodbenica lahko kadar koli nadomesti svoje prejšnje uradno obvestilo s sprejetjem spremembe, sprememba te priloge pa za to pogodbenico začne veljati po deponiranju listine o sprejetju pri depozitarju.
6. Če se predlaga, da se priloge I, II ali III spremenijo tako, da se v ta protokol vključi neka snov:
(a) predlagatelj izvršnemu organu pošlje podatke, navedene v sklepu izvršnega organa št. 1998/2, vključno z vsemi njegovimi spremembami, in
(b) pogodbenice ocenijo predlog v skladu s postopki, določenimi v sklepu izvršnega organa št. 1998/2, vključno z vsemi njegovimi spremembami.
7. Vsak sklep o spremembi sklepa izvršnega organa št. 1998/2 se sprejme s konsenzom pogodbenic na zasedanju v izvršnega organa in začne veljati šestdeseti dan po datumu sprejetja.
15. člen
1. Ta protokol je na voljo za podpis v Aarhusu (Danska) od 24. do 25. junija 1998, nato pa na sedežu Združenih narodov v New Yorku do 21. decembra 1998 državam članicam komisije in državam, ki imajo pri komisiji posvetovalni status v skladu z osmim odstavkom resolucije št. 36 (IV) Ekonomsko-socialnega sveta z dne 28. marca 1947, ter organizacijam za regionalno gospodarsko povezovanje, ki so jih ustanovile suverene države članice komisije in so pristojne za pogajanja, sklepanje in izvajanje mednarodnih sporazumov o zadevah iz protokola, če so te države in organizacije pogodbenice konvencije.
2. Take organizacije za regionalno gospodarsko povezovanje pri zadevah v svoji pristojnosti v svojem imenu uresničujejo pravice in izpolnjujejo obveznosti, ki jih ta protokol nalaga njihovim državam članicam. V takih primerih države članice teh organizacij ne smejo uresničevati teh pravic posamično.
16. člen
1. Podpisnice ratificirajo, sprejmejo ali odobrijo ta protokol.
2. Od 21. decembra 1998 lahko države in organizacije, ki izpolnjujejo zahteve iz prvega odstavka 15. člena, pristopijo k temu protokolu.
17. člen
Listine o ratifikaciji, sprejetju, odobritvi ali pristopu se deponirajo pri generalnem sekretarju Združenih narodov, ki bo opravljal nalogo depozitarja.
18. člen
1. Ta protokol začne veljati devetdeseti dan po datumu deponiranja šestnajste listine o ratifikaciji, sprejetju, odobritvi ali pristopu pri depozitarju.
2. Za vsako državo in organizacijo iz prvega odstavka 15. člena, ki ratificira, sprejme ali odobri ta protokol ali pristopi k njemu po deponiranju šestnajste listine o ratifikaciji, sprejetju, odobritvi ali pristopu, začne protokol veljati devetdeseti dan po datumu, ko ta pogodbenica deponira svojo listino o ratifikaciji, sprejetju, odobritvi ali pristopu.
19. člen
Kadar koli po petih letih po datumu začetka veljavnosti tega protokola za posamezno pogodbenico ga lahko ta odpove s pisnim uradnim obvestilom depozitarju. Odpoved začne veljati devetdeseti dan po datumu, ko depozitar prejme uradno obvestilo o odpovedi, ali pozneje, če je tako določeno v uradnem obvestilu o odpovedi.
20. člen
Izvirnik tega protokola, katerega besedila v angleškem, francoskem in ruskem jeziku so enako verodostojna, se deponira pri generalnem sekretarju Združenih narodov.
V POTRDITEV TEGA so podpisani, ki so bili za to pravilno pooblaščeni, podpisali ta protokol.
Sestavljeno v Aarhusu (Danska) 24. junija tisoč devetsto osemindevetdeset.
Če ni določeno drugače v tem protokolu, se ta priloga ne nanaša na spodaj naštete snovi: (i) kadar se pojavijo kot onesnaževala v izdelkih ali (ii) kadar se pojavijo v izdelkih, izdelanih ali uporabljenih do datuma uveljavitve, ali (iii) kadar se uporabljajo lokalno kot vmesni kemični produkti pri proizvodnji ene ali več različnih snovi in se torej kemijsko pretvorijo. Če ni drugače določeno, začne vsaka od spodaj navedenih obveznosti veljati z datumom začetka veljavnosti protokola.
|       Snov      |                 Zahteve glede izvajanja                 |
|                 +--------------+------------------------------------------+
|                 |  Opustitev   |                  Pogoji                  |
|aldrin           |proizvodnje   |Jih ni.                                   |
|CAS št.: 309-00-2+--------------+------------------------------------------+
|                 |uporabe       |Jih ni.                                   |
|klordan          |proizvodnje   |Jih ni.                                   |
|CAS št.: 57-74-9 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni.                                   |
|klordekon        |proizvodnje   |Jih ni.                                   |
|CAS št.: 143-50-0+--------------+------------------------------------------+
|                 |uporabe       |Jih ni.                                   |
|DDT              |proizvodnje   |1. Opustiti proizvodnjo v enem letu, potem|
|CAS št.: 50-29-3 |              |ko pogodbenice dosežejo soglasje, da so na|
|                 |              |voljo ustrezne nadomestne snovi za DDT za |
|                 |              |varovanje zdravja ljudi pred boleznimi,   |
|                 |              |kot sta malarija in encefalitis.          |
|                 |              |2. Pogodbenice najpozneje v enem letu po  |
|                 |              |datumu začetka veljavnosti tega protokola,|
|                 |              |potem pa občasno po potrebi ter po posvetu|
|                 |              |s Svetovno zdravstveno organizacijo,      |
|                 |              |Organizacijo ZN za prehrano in kmetijstvo |
|                 |              |ter Programom ZN za okolje ocenijo        |
|                 |              |razpoložljivost in možnost uporabe        |
|                 |              |nadomestnih snovi, in če je to primerno,  |
|                 |              |spodbujajo komercializacijo varnejših in  |
|                 |              |ekonomsko sprejemljivih nadomestnih snovi |
|                 |              |za DDT, da se proizvodnjo DDT čim prej    |
|                 |              |opusti.                                   |
|                 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni, razen tistih, navedenih v prilogi |
|                 |              |II.                                       |
|dieldrin         |proizvodnje   |Jih ni.                                   |
|CAS št.: 60-57-1 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni.                                   |
|endrin           |proizvodnje   |Jih ni.                                   |
|CAS št.: 72-20-8 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni.                                   |
|heptaklor        |proizvodnje   |Jih ni.                                   |
|CAS št.: 76-44-8 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni, razen če ga uporablja pooblaščeno |
|                 |              |osebje za boj proti ognjenim mravljam v   |
|                 |              |zaprtih industrijskih električnih         |
|                 |              |priključnih dozah. Takšno uporabo je treba|
|                 |              |ponovno oceniti v skladu s tem protokolom |
|                 |              |najpozneje dve leti po datumu začetka     |
|                 |              |veljavnosti.                              |
|heksabromobifenil|proizvodnje   |Jih ni.                                   |
|CAS št.: 36355-  +--------------+------------------------------------------+
|01-8             |uporabe       |Jih ni.                                   |
|heksaklorobenzen |proizvodnje   |Jih ni, razen za proizvodnjo za omejene   |
|CAS št.: 118-74-1|              |namene, kot je določeno v izjavi, ki jo je|
|                 |              |deponirala država z gospodarstvom na      |
|                 |              |prehodu po podpisu ali pristopu.          |
|                 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni, razen za omejeno uporabo, kot je  |
|                 |              |določeno v izjavi, ki jo je deponirala    |
|                 |              |država z gospodarstvom na prehodu po      |
|                 |              |podpisu ali pristopu.                     |
|mirex            |proizvodnje   |Jih ni.                                   |
|CAS št.: 2385-85-+--------------+------------------------------------------+
|5                |uporabe       |Jih ni.                                   |
|PCB (a/)         |proizvodnje   |Jih ni, razen za države z gospodarstvom na|
|                 |              |prehodu, ki morajo opustiti proizvodnjo,  |
|                 |              |takoj ko je mogoče, najpozneje pa do 31.  |
|                 |              |decembra 2005, in v izjavi, ki jo         |
|                 |              |deponirajo skupaj s svojo listino o       |
|                 |              |ratifikaciji, sprejetju, odobritvi ali    |
|                 |              |pristopu, navedejo, da bodo to storile.   |
|                 +--------------+------------------------------------------+
|                 |uporabe       |Jih ni, razen tistih, določenih v prilogi |
|                 |              |II.                                       |
|toksafen         |proizvodnje   |Jih ni.                                   |
|CAS št.: 8001-35-+--------------+------------------------------------------+
|2                |uporabe       |Jih ni.                                   |
    (a/)Pogodbenice se strinjajo, da v skladu s tem protokolom do 31. 
decembra 2004 ponovno ocenijo proizvodnjo in uporabo polikloriranih 
terfenilov in »ugileca«.
Če ni določeno drugače v tem protokolu, se ta priloga ne nanaša na spodaj naštete snovi: (i) kadar se pojavijo kot onesnaževala v izdelkih ali (ii) kadar se pojavijo v izdelkih, izdelanih ali uporabljenih do datuma uveljavitve, ali (iii) kadar se uporabljajo lokalno kot vmesni kemični produkt pri proizvodnji ene ali več različnih snovi in se torej kemijsko pretvorijo. Če ni drugače določeno, začne vsaka od spodaj navedenih obveznosti veljati z datumom začetka veljavnosti protokola.
|    Snov     |                   Zahteve glede izvajanja                    |
|             +------------------------------+-------------------------------+
|             |       Omejena uporaba        |             Pogoji            |
|DDT          |1. Za varovanje zdravja ljudi |1. Uporaba dovoljena le kot    |
|CAS št.: 50- |pred boleznimi, kot sta       |sestavni del strategije za     |
|29-3         |malarija in encefalitis.      |celovito varstvo pred          |
|             |                              |škodljivci in samo v takšnem   |
|             |                              |obsegu, kot je potreben, ter   |
|             |                              |samo do enega leta po datumu   |
|             |2. Kot vmesni kemični produkt |opustitve proizvodnje v skladu |
|             |za proizvodnjo dikofola.      |s prilogo I.                   |
|             |                              |2. Takšno uporabo je treba     |
|             |                              |ponovno oceniti najpozneje dve |
|             |                              |leti po datumu začetka         |
|             |                              |veljavnosti tega protokola.    |
|HCH          |Tehnični HCH (HCH iz mešanice |                               |
|CAS št.:     |izomerov) je omejen na uporabo|                               |
|608-73-1     |kot vmesni produkt v kemični  |                               |
|             |industriji.                   |                               |
|             +------------------------------+-------------------------------+
|             |Uporaba izdelkov, v katerih je|Vse vrste omejene uporabe      |
|             |najmanj 99% izomera HCH v     |lindana se v skladu s tem      |
|             |obliki gama (tj. lindana, CAS |protokolom ponovno ocenijo     |
|             |št.: 58-89-9), je omejena na: |najpozneje dve leti po njegovi |
|             |1. obdelavo semen;            |uveljavitvi.                   |
|             |2. uporabo na tleh, ki ji     |                               |
|             |sledi takojšnje pronicanje v  |                               |
|             |površinski sloj tal;          |                               |
|             |3. strokovno zaščito in       |                               |
|             |industrijsko obdelavo žaganega|                               |
|             |in stavbnega lesa ter         |                               |
|             |hlodovine;                    |                               |
|             |4. topični insekticid za      |                               |
|             |zdravje ljudi in uporabo v    |                               |
|             |veterini;                     |                               |
|             |5. talno uporabo pri sadikah  |                               |
|             |dreves, omejeno uporabo za    |                               |
|             |trate ter uporabo v           |                               |
|             |drevesnicah in za okrasne     |                               |
|             |rastline tako v zaprtih       |                               |
|             |prostorih kot na prostem;     |                               |
|             |6. uporabo v zaprtih prostorih|                               |
|             |v industriji in stanovanjih;  |                               |
|PCB (a/)     |PCB-ji, ki se uporabljajo od  |Pogodbenice si odločno         |
|             |datuma začetka veljavnosti    |prizadevajo:                   |
|             |protokola ali so izdelani do  |(a) opustiti uporabo           |
|             |31. decembra 2005 v skladu s  |prepoznavnih PCB-jev v opremi  |
|             |prilogo I.                    |(tj. transformatorjih,         |
|             |                              |kondenzatorjih ali drugih      |
|             |                              |posodah, ki vsebujejo ostanke  |
|             |                              |tekočine), ki vsebuje več kot 5|
|             |                              |dm3 PCB-jev in katerih         |
|             |                              |koncentracija je 0,05% PCB-jev |
|             |                              |ali več, takoj ko je to mogoče,|
|             |                              |najpozneje pa do 31. decembra  |
|             |                              |2010 ali 31. decembra 2015 za  |
|             |                              |države z gospodarstvom na      |
|             |                              |prehodu;                       |
|             |                              |(b) uničevati ali              |
|             |                              |dekontaminirati vse tekoče PCB-|
|             |                              |je, navedeni v pododstavku (a),|
|             |                              |in druge tekočine s PCB-ji, ki |
|             |                              |niso v opremi in vsebujejo več |
|             |                              |kot 0,005% PCB-jev, na način,  |
|             |                              |sprejemljiv za okolje, takoj ko|
|             |                              |je to mogoče, najpozneje pa do |
|             |                              |31. decembra 2015 ali 31.      |
|             |                              |decembra 2020 za države z      |
|             |                              |gospodarstvom na prehodu, ter  |
|             |                              |(c) dekontaminirati ali        |
|             |                              |odstraniti opremo, navedeno v  |
|             |                              |pododstavku (a), na način,     |
|             |                              |sprejemljiv za okolje.         |
(a/) Pogodbenice se strinjajo, da v skladu s tem protokolom do 31. 
decembra 2004 ponovno ocenijo proizvodnjo in uporabo polikloriranih terfenilov
in »ugileca«.
|       Snov      |                      Referenčno leto                     |
|PAH (a/)         |1990 ali katero koli drugo leto od vključno 1985 do 1995, |
|                 |ki ga določi pogodbenica ob ratifikaciji, sprejetju,      |
|                 |odobritvi ali pristopu.                                   |
|dioksini/furani  |1990 ali katero koli drugo leto od vključno 1985 do 1995, |
|(b)              |ki ga določi pogodbenica ob ratifikaciji, sprejetju,      |
|                 |odobritvi ali pristopu.                                   |
|heksaklorobenzen |1990 ali katero koli drugo leto od vključno 1985 do 1995, |
|                 |ki ga določi pogodbenica ob ratifikaciji, sprejetju,      |
|                 |odobritvi ali pristopu.                                   |
    (a/) Policiklični aromatični ogljikovodiki (PAH): Za evidence emisij se
uporabijo naslednje štiri indikatorske spojine: benzo(a)piren, benzo(b)
fluranten, benzo(k)fluoranten in indeno(1, 2, 3-cd) piren.
    (b/) Dioksini in furani (PCDD/F): Poliklorirani dibenzo-p-dioksini (PCDD)
in poliklorirani dibenzofurani (PCDF) so triciklične, aromatske spojine, ki 
nastanejo z dvema benzenskima obročema, ki sta povezana z dvema atomoma 
kisika v PCDD in z enim atomom kisika v PCDF in katerih atome vodika lahko
nadomesti do 8 atomov klora.
1. Dioksini in furani (PCDD/F) so opredeljeni v prilogi III tega protokola.
2. Mejne vrednosti so izražene kot ng/m3 ali mg/m3 v standardnih pogojih (273,15 K; 101,3 kPa in suhi plin).
3. Mejne vrednosti se nanašajo na normalno delovanje, vključno s postopki za zagon in ustavitev, razen če niso bile določene posebne mejne vrednosti za to delovanje.
4. Vzorčenje in analiza vseh onesnaževal se opravi v skladu s standardi, ki jih je določil Evropski odbor za standardizacijo (CEN), Mednarodna organizacija za standardizacijo (ISO), ali z ustreznimi referenčnimi metodami Združenih držav ali Kanade. Med pripravo standardov CEN ali ISO veljajo nacionalni standardi.
5. Za preverjanje je treba pri razlagi rezultatov meritev v zvezi z mejno vrednostjo upoštevati tudi netočnost merilne metode. Šteje se, da je mejna vrednost dosežena, če rezultat meritve, od katerega je odšteta netočnost merilne metode, ne presega te vrednosti.
6. Emisije različnih sorodnih vrst PCDD/F so izražene v ekvivalentih toksičnosti (TE) v primerjavi z 2,3,7,8-TCDD v skladu s sistemom, ki ga je predlagal Odbor Nata o izzivih sodobne družbe (NATO-CCMS) leta 1988.
    7. Spodaj navedene mejne vrednosti, ki se nanašajo na 11-odstotno 
koncentracijo O(2) v dimnem plinu, veljajo za naslednje vrste sežigalnic:
    za komunalne trdne odpadke (sežig več kot 3 tone na uro)
            0,1 ng TE/m3
    za medicinske trdne odpadke (sežig več kot 1 tona na uro)
            0,5 ng TE/m3
    za nevarne odpadke (sežig več kot 1 tona na uro)
            0,2 ng TE/m3.
1. Namen te priloge je zagotoviti pogodbenicam konvencije smernice za prepoznavanje najboljših razpoložljivih tehnik, ki so na voljo, za izpolnjevanje obveznosti iz petega odstavka 3. člena protokola.
2. »Najboljše razpoložljive tehnike« (best available techniques – »BAT«) pomenijo najučinkovitejšo in najsodobnejšo stopnjo v razvoju dejavnosti in njihovih delovnih postopkov, ki označujejo praktično primernost posameznih tehnik, da se načelno zagotovi podlaga za mejne vrednosti emisij, namenjena preprečevanju, in če to ni mogoče, splošnemu zmanjševanju emisij in njihovega vpliva na okolje kot celoto:
– »tehnike« vključujejo uporabljeno tehnologijo in način projektiranja gradnje, vzdrževanja, upravljanja in razgradnje objektov in naprav;
– »razpoložljive tehnike« pomenijo tiste, katerih stopnja razvoja omogoča izvajanje v ustrezni industrijski panogi v ekonomsko in tehnično izvedljivih razmerah ob upoštevanju stroškov in koristi ne glede na to, ali se tehnike uporabljajo ali nastanejo na območju udeležene pogodbenice, če so na primeren način dostopne upravljavcu;
 – »najboljše« pomenijo najučinkovitejše tehnike pri doseganju visoke splošne ravni varovanja okolja kot celote.
Pri določanju najboljših razpoložljivih tehnik je treba na splošno ali v posameznih primerih posebej upoštevati spodaj navedene dejavnike, verjetne stroške in koristi ukrepa ter načeli previdnosti in preprečevanja:
– uporabo tehnologij z malo odpadki;
– uporabo manj nevarnih snovi;
– spodbujanje predelave in recikliranja snovi, ki nastajajo ali se uporabljajo pri proizvodnji, ter odpadkov;
– primerljive postopke, naprave ali delovne postopke, ki so že uspešno preizkušeni v industrijskem obsegu;
– tehnološki napredek in spremembe v znanstvenem vedenju in razumevanju;
– naravo, učinke in količino nastalih emisij;
– datume začetka obratovanja novih ali obstoječih naprav;
– čas, potreben za uvedbo najboljše razpoložljive tehnike;
– porabo in naravo surovin (vključno z vodo), ki se uporabljajo v postopku, in njihovo energetsko učinkovitost;
– nujnost, da se preprečita ali čim bolj zmanjšata skupen vpliv emisij in tveganje za okolje;
– nujnost, da se preprečijo nesreče in čim bolj zmanjšajo njihove posledice za okolje.
Namen uporabe pojma najboljše razpoložljive tehnike ni predpisovanje določene tehnike ali tehnologije, ampak upoštevanje tehničnih lastnosti posameznih naprav in objektov, njihove geografske lege in lokalnih okoljskih razmer.
3. Informacije v zvezi z učinkovitostjo in stroški ukrepov nadzora izhajajo iz dokumentov, ki sta jih dobili in pregledali projektna skupina in pripravljalna delovna skupina za obstojna organska onesnaževala. Če ni drugače določeno, se navedene tehnike štejejo za dobro utečene na podlagi izkušenj pri obratovanju.
4. Vedno več je izkušenj z novimi obrati, v katerih se uporabljajo tehnike z nizkimi emisijami, in s prilagajanjem obstoječih obratov. Zato bo treba redno dopolnjevati in spreminjati to prilogo. Najboljše razpoložljive tehnike (BAT) za nove obrate je običajno mogoče uporabiti tudi v že obstoječih obratih, če sta zagotovljena ustrezno prehodno obdobje in prilagoditev.
5. V prilogi so našteti številni ukrepi nadzora, ki zajemajo stroške in učinkovitost. Izbira ukrepa za vsak posamezen primer je odvisna od številnih dejavnikov, kot so gospodarske razmere, tehnološka infrastruktura in zmogljivosti ter kateri koli ukrepi za nadzor nad onesnaževanjem zraka.
6. Najpomembnejša obstojna onesnaževala iz nepremičnih virov so:
(a) poliklorirani dibenzo-p-dioksini / furani (PCDD/F);
(b) heksaklorobenzen (HCB);
(c) policiklični aromatski ogljikovodiki (PAH).
Ustrezne definicije so v prilogi III tega protokola.
7. Emisije PCDD/F nastajajo pri toplotnih postopkih, pri katerih so udeležene organske snovi in klor, in so posledica nepopolnega zgorevanja ali kemičnih reakcij. Večji nepremični viri PCDD/F so lahko:
(a) sežiganje odpadkov, vključno s sosežigom;
(b) toplotni metalurški postopki, na primer proizvodnja aluminija in drugih barvnih kovin, železa in jekla;
(c) kurilne naprave za proizvodnjo energije;
(d) zgorevanje v gospodinjstvih in
(e) posamezni kemični proizvodni postopki, pri katerih se sproščajo vmesni in stranski produkti.
8. Večji nepremični viri emisij PAH so lahko:
(a) ogrevanje z lesom in premogom v gospodinjstvih;
(b) odprti ogenj, na primer sežiganje smeti, gozdni požari, požiganje strnišč;
(c) proizvodnja koksa ali anod;
(d) proizvodnja aluminija (po Soederbergovem postopku) in
(e) naprave za zaščito lesa, razen za pogodbenice, pri katerih ta kategorija ne pomeni pomembnejšega deleža v celotni emisiji PAH (kot so opredeljeni v prilogi III).
9. Emisije HCB so posledica istih toplotnih in kemičnih postopkov kot emisije PCDD/F, HCB pa nastaja zaradi podobnih mehanizmov. Večji viri emisij HCB so lahko:
(a) sežigalnice odpadkov, vključno s sosežigom;
(b) toplotni viri v metalurški industriji in
(c) uporaba kloriranih goriv v industrijskih pečeh.
10. Obstaja več možnosti za nadzorovanje ali preprečevanje emisij obstojnih organskih onesnaževal iz nepremičnih virov. Mednje sodijo zamenjava ustreznih vhodnih materialov, spremembe postopkov (tudi postopkov nadzora nad vzdrževanjem in delovanjem) in prilagajanje že obstoječih obratov. V spodnjem seznamu je naveden splošni okvir možnih ukrepov, ki se lahko izvajajo posamično ali kombinirano:
(a) zamenjava vhodnih materialov, če gre za obstojna organska onesnaževala ali če obstaja neposredna povezava med temi materiali in emisijami obstojnih organskih onesnaževal iz tega vira;
(b) najboljše okoljske prakse, kot so skrbno ravnanje, preventivni vzdrževalni programi ali spremembe postopkov, kot je uvedba zaprtih sistemov (na primer v koksarnah ali uporaba inertnih elektrod pri elektrolizi);
(c) spremembe postopkov, tako da se zagotovi popolno zgorevanje in s tem prepreči nastanek obstojnih organskih onesnaževal, in sicer z nadzorovanjem parametrov, kot je temperatura zgorevanja ali zadrževalni čas;
(d) metode čiščenja dimnih plinov, kot so toplotno ali katalitsko sežiganje ali oksidacija, odpraševanje, adsorpcija;
(e) obdelava ostankov, odpadkov in blata iz čistilnih naprav, na primer s toplotno obdelavo ali tako, da postanejo inertni;
11. Stopnje emisij, navedene pri različnih ukrepih v preglednicah 1, 2, 3, 4, 5, 6, 8 in 9, se običajno nanašajo na posamezne primere. Številke ali razponi prikazujejo stopnje emisij kot odstotek mejnih vrednosti emisij pri uporabi klasičnih tehnik.
12. Presoja o stroškovni učinkovitosti lahko temelji na skupnih letnih stroških na enoto zmanjševanja emisij (vključno z naložbenimi in obratovalnimi stroški). Stroške zmanjševanja emisij obstojnih organskih onesnaževal je treba presojati tudi v okviru celotne ekonomike postopka, kot so vpliv ukrepov nadzora in proizvodni stroški. Glede na številne vpletene dejavnike so naložbeni in obratovalni stroški izrazito odvisni od posameznega primera.
A. Sežiganje odpadkov
13. Sežiganje odpadkov vključuje sežiganje komunalnih odpadkov, nevarnih odpadkov, medicinskih odpadkov in blata iz čistilnih naprav.
14. Najpomembnejši ukrepi nadzora nad emisijami PCDD/F iz sežigalnic odpadkov so:
(a) primarni ukrepi v zvezi z odpadki, ki se sežigajo;
(b) primarni ukrepi v zvezi s postopkom sežiganja;
(c) ukrepi za nadzor nad fizikalnimi parametri postopka sežiganja in odpadnih plinov (na primer temperaturnega praga, hitrosti ohlajanja, vsebnosti O(2) itn.);
(d) čiščenje dimnih plinov in
(e) obdelava ostankov pri postopku čiščenja.
15. Primarni ukrepi v zvezi z odpadki, ki se sežigajo, pri katerih se vhodni material pripravi tako, da se zmanjša količina halogeniranih snovi in nadomesti z nehalogeniranimi snovmi, pri sežiganju komunalnih ali nevarnih odpadkov niso primerni. Primerneje je prilagoditi postopek sežiganja in vpeljati sekundarne ukrepe za čiščenje dimnih plinov. Priprava vhodnega materiala pa je koristen primarni ukrep za zmanjšanje količine odpadkov, ki je lahko koristen tudi zaradi možnosti recikliranja. Zaradi manjše količine odpadkov za sežiganje ima to lahko za posledico posredno zmanjšanje emisij PCDD/F.
16. Spremembe postopka sežiganja, s katerimi se optimizirajo pogoji zgorevanja, so pomemben in učinkovit ukrep za zmanjševanje emisij PCDD/F (običajno 850 °C ali več, odmera dovajanja kisika glede na kalorično vrednost in konsistenco odpadkov, zadosten zadrževalni čas – 850 °C za približno 2 sekundi – in vrtinčenje plina, izogibanje področjem hladnega plina v sežigalnici itn.). Naprave z zgorevanjem v zvrtinčeni plasti omogočajo temperature, nižje od 850 °C, za doseganje ustreznih vrednosti emisij. V obstoječih sežigalnicah je v ta namen običajno treba prilagoditi in/ali zamenjati opremo, kar morda ni gospodarno v vseh državah. Vsebnost ogljika v pepelu bi bilo treba čim bolj zmanjšati.
17. Ukrepi v zvezi z dimnimi plini. Naslednji ukrepi omogočajo razmeroma učinkovito zmanjšanje vsebnosti PCDD/F v dimnih plinih. Do sinteze de novo pride pri približno 250–450 °C. Ti ukrepi so nujni za nadaljnje zmanjševanje, da se dosežejo želene vrednosti na izhodnem delu sistema:
(a) pranje dimnih plinov (zelo učinkovito in razmeroma poceni);
(b) dodajanje inhibitorjev, kot sta trietanolamin ali trietilamin (lahko zmanjšajo tudi dušikove okside), zaradi varnostnih razlogov pa je treba upoštevati tudi stranske reakcije;
(c) uporaba sistemov za zbiranje prahu pri temperaturi med 800 in 1000 °C, na primer keramičnih filtrov in ciklonov;
(d) uporaba nizkotemperaturnih električnih sistemov in
(e) preprečevanje usedanja letečega pepela v odvodnem sistemu za dimne pline.
18. Metode čiščenja dimnih plinov so:
(a) klasično odpraševanje, s katerim se zmanjšajo emisije na delce vezanih PCDD/F;
(b) selektivno katalitsko zmanjševanje (selective catalytic reduction – SCR) ali selektivno nekatalitsko zmanjševanje (selective non-catalytic reduction – SNCR);
(c) adsorpcija z aktivnim ogljem ali koksom v sistemih zgorevanja z mirujočo ali zvrtinčeno plastjo;
(d) različne adsorpcijske metode in sistemi optimiziranega postopka izločanja prahu z mešanicami aktivnega oglja, metalurškega koksa, raztopin apna in apnenca v reaktorjih z mirujočo, potujočo ali zvrtinčeno plastjo. Učinkovitost zbiranja plinastih PCDD/F je mogoče izboljšati, če je pod vrhnjo plastjo vrečastega filtra plast aktivnega koksa;
(e) H(2)O(2 )oksidacija in
(f) metode katalitskega zgorevanja, pri katerih se uporabljajo različne vrste katalizatorjev (to so katalizatorji Pt/Al(2)O(3) ali bakrovega kromata z različnimi dodatki za stabiliziranje površine in upočasnitev staranja katalizatorjev).
19. Z zgoraj navedenimi metodami je mogoče doseči stopnjo emisije 0,1 ng TE/m3 PCDD/F v dimnih plinih. Toda v sistemih z adsorpcijo/filtri z aktivnim ogljem ali koksom je treba poskrbeti, da uhajajoči ogljikov prah ne poveča emisij PCDD/F od te enote naprej. Prav tako se je treba zavedati, da adsorberji in naprave za odpraševanje pred katalizatorji (tehnika selektivnega zmanjševanja s katalizatorjem – SCR) povzročajo nastanek s PCDD/F obremenjenih preostankov, ki jih je treba vrniti v tehnološki postopek ali pa poskrbeti za ustrezno odlaganje.
20. Primerjava med različnimi ukrepi za zmanjšanje PCDD/F v dimnih plinih je zelo kompleksna.V preglednici je navedenih več vrst industrijskih obratov z različnimi zmogljivostmi in zasnovo. Stroškovni parametri vključujejo ukrepe za čim večje zmanjšanje tudi drugih onesnaževal, kot so težke kovine (vezane ali nevezane na delce). Večinoma torej ni mogoče sklepati o neposredni povezavi z zmanjšanjem emisij PCDD/F. Povzetek dostopnih podatkov o različnih ukrepih nadzora je v preglednici 1.
Preglednica 1: Primerjava različnih ukrepov za čiščenje dimnih plinov insprememb postopkov v sežigalnicah, katerih cilj je zmanjšanje emisij PCDD/F
|        Ukrep       |  Stopnja emisij |    Ocena   |   Težave/ugotovitve   |
|                    |     (%)(a/)     |  stroškov  |                       |
|Primarni ukrepi –   |                 |            |                       |
|prilagoditev        |                 |            |                       |
|vhodnega materiala: |                 |            |                       |
|– izločitev         |Dobljene stopnje |            |Predhodno ločevanje    |
|prekurzorjev in     |emisij niso      |            |vhodnega materiala ni  |
|vhodnih materialov, |kvantificirane;  |            |učinkovito; zbrati je  |
|ki vsebujejo klor,  |kaže, da niso    |            |mogoče le posamezne    |
|in                  |premosorazmerno  |            |dele; drugemu          |
|                    |odvisne od       |            |materialu, ki vsebuje  |
|                    |količine vhodnega|            |klor, na primer        |
|                    |materiala.       |            |kuhinjski soli,        |
|                    |                 |            |papirju itn., se ni    |
|– urejanje tokov    |                 |            |mogoče izogniti. Pri   |
|odpadkov.           |                 |            |nevarnih kemičnih      |
|                    |                 |            |odpadkih to ni         |
|                    |                 |            |zaželeno.              |
|                    |                 |            |Koristen in v posebnih |
|                    |                 |            |primerih uresničljiv   |
|                    |                 |            |primarni ukrep (na     |
|                    |                 |            |primer odpadna olja,   |
|                    |                 |            |električne komponente  |
|                    |                 |            |itn.); lahko je        |
|                    |                 |            |koristen zaradi        |
|                    |                 |            |možnosti recikliranja. |
|Sprememba postopka  |                 |            |                       |
|sežiganja:          |                 |            |                       |
|– optimizirani      |                 |            |Potrebna je            |
|pogoji zgorevanja;  |                 |            |prilagoditev celotnega |
|                    |                 |            |postopka sežiganja.    |
|– izogibanje        |                 |            |                       |
|temperaturam pod 850|                 |            |                       |
|°C in hladnim       |                 |            |                       |
|območjem v dimnih   |                 |            |                       |
|plinih;             |                 |            |                       |
|                    |                 |            |                       |
|– zadostna vsebnost |                 |            |                       |
|kisika; nadzor nad  |                 |            |                       |
|količino dovedenega |                 |            |                       |
|kisika, odvisno od  |                 |            |                       |
|kalorične vrednosti |                 |            |                       |
|in konsistence      |                 |            |                       |
|vhodnega materiala, |                 |            |                       |
|in                  |                 |            |                       |
|– zadosten          |                 |            |                       |
|zadrževalni čas in  |                 |            |                       |
|vrtinčenje.         |                 |            |                       |
|Ukrepi v zvezi z    |                 |            |                       |
|dimnimi plini:      |                 |            |                       |
|                    |                 |            |                       |
|Preprečevanje       |                 |            |                       |
|usedanja delcev z:  |                 |            |                       |
|– odstranjevalniki  |                 |            |Parno izpihovanje      |
|saj, mehanskimi     |                 |            |lahko poveča stopnjo   |
|rahljalniki zvočni  |                 |            |nastajanja PCDD/F.     |
|ali parnimi         |                 |            |                       |
|izpihovalniki saj.  |                 |            |                       |
|Odstranjevanje      |< 10             |Srednji     |Odstranjevanje PCDD/F, |
|prahu, običajno v   |                 |            |adsorbiranih na delce. |
|sežigalnicah        |                 |            |Metode odstranjevanja  |
|odpadkov:           |                 |            |delcev iz tokov vročih |
|                    |                 |            |dimnih plinov se       |
|                    |                 |            |uporabljajo le v       |
|                    |                 |            |poskusnih obratih.     |
|– vrečasti filtri,  |1–0,1            |Višji       |Uporaba pri            |
|                    |                 |            |temperaturah < 150 °C  |
|– keramični filtri, |Majhna           |            |Uporaba pri            |
|                    |učinkovitost     |            |temperaturah od 800 do |
|                    |                 |            |1000 °C.               |
|– cikloni in        |Majhna           |Srednji     |                       |
|                    |učinkovitost     |            |                       |
|– elektrostatično   |Srednja          |            |Uporaba pri            |
|odpraševanje.       |učinkovitost     |            |temperaturi 450 °C.    |
|                    |                 |            |Možno spodbujanje      |
|                    |                 |            |sinteze PCDD/F de      |
|                    |                 |            |novo, večje emisije NO |
|                    |                 |            |(x), manjša            |
|                    |                 |            |rekuperacija toplote.  |
|Katalitska          |                 |            |Uporaba pri            |
|oksidacija.         |                 |            |temperaturah od 800 do |
|                    |                 |            |1000 °C. Potrebno je   |
|                    |                 |            |ločeno zmanjševanje    |
|                    |                 |            |emisij iz plinaste     |
|                    |                 |            |faze.                  |
|Pranje plina.       |                 |            |                       |
|Visokozmogljiva     |                 |            |                       |
|adsorpcijska enota z|                 |            |                       |
|dodanimi delci      |                 |            |                       |
|aktivnega oglja     |                 |            |                       |
|(elektrodinamična   |                 |            |                       |
|Venturijeva cev).   |                 |            |                       |
|Selektivno          |                 |Visoki      |Zmanjšanje NO(x)ob     |
|katalitsko          |                 |naložbeni   |dodanem NH(3),         |
|zmanjševanje (SCR). |                 |in nizki    |potrebno je veliko     |
|                    |                 |obratovalni |prostora, porabljene   |
|                    |                 |stroški     |katalizatorje in       |
|                    |                 |            |ostanke aktivnega      |
|                    |                 |            |ogljika ali lignitnega |
|                    |                 |            |koksa je mogoče        |
|                    |                 |            |odlagati,              |
|                    |                 |            |katalizatorje lahko    |
|                    |                 |            |proizvajalci večinoma  |
|                    |                 |            |ponovno obdelajo,      |
|                    |                 |            |aktivni ogljik ali     |
|                    |                 |            |lignitni koks je       |
|                    |                 |            |mogoče sežigati v      |
|                    |                 |            |strogo nadzorovanih    |
|                    |                 |            |razmerah.              |
|Različne metode     |                 |            |                       |
|mokre in suhe       |                 |            |                       |
|adsorpcije z        |                 |            |                       |
|mešanicami aktivnega|                 |            |                       |
|oglja, metalurškega |                 |            |                       |
|koksa, raztopin apna|                 |            |                       |
|in apnenca v        |                 |            |                       |
|reaktorjih z        |                 |            |                       |
|mirujočo, potujočo  |                 |            |                       |
|ali zvrtinčeno      |                 |            |                       |
|plastjo:            |                 |            |                       |
|– reaktor z mirujočo|< 2              |Visoki      |Odstranjevanje         |
|plastjo, adsorpcija |(0,1 ng TE/m3)   |naložbeni   |ostankov; potrebno je  |
|z aktivnim ogljem   |                 |in srednji  |veliko prostora.       |
|ali metalurškim     |                 |obratovalni |                       |
|koksom, in          |                 |stroški     |                       |
|– reaktor s         |< 10             |Nizki       |Odstranjevanje         |
|kanaliziranim tokom |(0,1 ng TE/m3)   |naložbeni,  |ostankov.              |
|ali krožečo         |                 |srednji     |                       |
|zvrtinčeno plastjo, |                 |obratovalni |                       |
|z dodanimi          |                 |stroški     |                       |
|raztopinami         |                 |            |                       |
|aktivnega koksa/apna|                 |            |                       |
|ali apnenca in v    |                 |            |                       |
|nadaljevanju z      |                 |            |                       |
|vrečastim filtrom.  |                 |            |                       |
|Dodajanje H(2)O(2). |< 2–5            |Nizki       |                       |
|                    |(0,1 ng TE/m3)   |naložbeni,  |                       |
|                    |                 |nizki       |                       |
|                    |                 |obratovalni |                       |
|                    |                 |stroški     |                       |
    (a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za
21. Sežigalnice medicinskih odpadkov so lahko v mnogih državah večji vir emisij PCDD/F. Posebni medicinski odpadki, kot so človeški anatomski deli, okuženi odpadki, igle, kri, plazma in citostatiki, se obravnavajo kot posebna oblika nevarnih odpadkov, medtem ko se druge vrste medicinskih odpadkov pogosto sežigajo pri viru v šaržah. Sežigalnice z nezveznim obratovanjem lahko izpolnijo enake zahteve glede zmanjšanja emisij PCDD/F kot druge sežigalnice odpadkov.
22. Pogodbenice bodo morda želele sprejeti politiko spodbujanja sežiganja komunalnih in medicinskih odpadkov v večjih regionalnih sežigalnicah namesto v manjših. Ob takem pristopu je uvajanje najboljših razpoložljivih tehnik (BAT) lahko stroškovno učinkovitejše.
23. Obdelava ostankov iz postopkov čiščenja dimnih plinov. V nasprotju s pepelom iz sežigalnic vsebujejo ti ostanki razmeroma visoke koncentracije težkih kovin, organskih onesnaževal (vključno s PCDD/F), kloridov in sulfidov. Odlaganje teh ostankov je zato treba strogo nadzorovati. Zlasti pri mokrem izločanju prahu nastanejo velike količine kislih in onesnaženih tekočih odpadkov. Obstajajo nekateri posebni načini obdelave teh ostankov. Mednje sodijo:
(a) katalitska obdelava prahu iz vrečastih filtrov pri nizkih temperaturah in brez kisika;
(b) izločanje prahu iz vrečastih filtrov s postopkom 3-R (izločanje težkih kovin s kislinami in uničevanje organskih snovi s sežiganjem);
(c) steklenenje prahu iz vrečastih filtrov;
(d) nadaljnje metode imobilizacije in
(e) uporaba plazemske tehnologije.
B. Toplotni postopki v metalurški industriji
24. Posamezni postopki v metalurški industriji so lahko pomembni viri emisij PCDD/F. To so:
(a) primarna železarska in jeklarska industrija (na primer plavži, obrati za sintranje, obrati za peletiranje železa);
(b) sekundarna železarska in jeklarska industrija ter
(c) primarna in sekundarna industrija barvnih kovin (proizvodnja bakra).
Ukrepi za nadzor emisijami PCDD/F v metalurški industriji so povzeti v preglednici 2.
25. Ob uporabi ukrepov za nadzor nad emisijami lahko naprave za proizvodnjo in obdelavo kovin, ki so vir emisij PCDD/F, zadostijo zahtevam glede največje dovoljene koncentracije 0,1 ng TE/m3 (pri količini pretoka odpadnega plina > 5000 m3/h).
Preglednica 2: Zmanjšanje emisij PCDD/F v metalurški industriji
|            Ukrep             |   Stopnja   |   Ocena    |Težave/ugotovitve|
|                              |emisij (%)(a)|  stroškov  |                 |
|Obrati za sintranje                                                        |
|Primarni ukrepi:              |             |            |                 |
|– optimiziranje/zaprtje       |             |   Nizki    |Ni 100-odstotno  |
|tračnih transporterjev za     |             |            |izvedljivo.      |
|sinter;                       |             |            |                 |
|– vračanje odpadnih plinov v  |      40     |   Nizki    |                 |
|obtok, na primer sintranje z  |             |            |                 |
|optimiziranimi emisijami      |             |            |                 |
|(EOS) zmanjša pretok          |             |            |                 |
|odpadnega plina za pribl. 35% |             |            |                 |
|(zmanjšanje stroškov          |             |            |                 |
|nadaljnjih sekundarnih        |             |            |                 |
|ukrepov zaradi manjšega       |             |            |                 |
|pretoka odpadnih plinov),     |             |            |                 |
|zmogljivost 1 mio. Nm(3)/h.   |             |            |                 |
|Sekundarni ukrepi:            |             |            |                 |
|– elektrostatično             |   Srednja   |  Srednji   |                 |
|odpraševanje + molekulsko     | učinkovitost|            |                 |
|sito;                         |             |            |                 |
|– dodajanje mešanic           |    Visoka   |  Srednji   |                 |
|apnenca/aktivnega ogljika;    | učinkovitost|            |                 |
|                              |   (0,1 ng   |            |                 |
|                              |    TE/m3)   |            |                 |
|– visokozmogljivi             |    Visoka   |  Srednji   |0,1 ng TE/m3 je  |
|izločevalniki prahu –         | učinkovitost|            |mogoče doseči    |
|obstoječa naprava: AIRFINE    |  zmanjšanja |            |ob večji porabi  |
|(Voest Alpine Stahl Linz) od  |  emisij na  |            |energije; takih  |
|leta 1993 za 600.000 Nm3/h;   |  0,2–0,4 ng |            |naparav še ni.   |
|druga naprava se načrtuje na  |  TE/m(na 3) |            |                 |
|Nizozemskem (Hoogoven) za     |             |            |                 |
|leto 1998.                    |             |            |                 |
|                              |             |            |                 |
|Proizvodnja barvnih kovin (na primer bakra)                                |
|Primarni ukrepi:              |             |            |                 |
|– predhodno razvrščanje       |             |   Nizki    |                 |
|sekundarnih surovin,          |             |            |                 |
|izločanje materiala, ki       |             |            |                 |
|vsebuje plastične snovi, ali  |             |            |                 |
|s PVC onesnaženih sekundarnih |             |            |                 |
|surovin, odstranjevanje       |             |            |                 |
|plasti površinskih nanosov in |             |            |                 |
|uporaba izolacijskega         |             |            |                 |
|materiala, ki ne vsebujejo    |             |            |                 |
|klora.                        |             |            |                 |
|Sekundarni ukrepi:            |             |            |                 |
|– pranje vročih odpadnih      |    Visoka   |   Nizki    |                 |
|plinov;                       | učinkovitost|            |                 |
|– uporaba kisika ali s        |     5–7     |   Visoki   |                 |
|kisikom obogatenega zraka pri |(1,5–2 TE/m3)|            |                 |
|gorenju, vbrizgavanje kisika  |             |            |                 |
|v jaškovno peč (da se         |             |            |                 |
|zagotovita popolno zgorevanje |             |            |                 |
|in zmanjšanje količine        |             |            |                 |
|odpadnih plinov na najmanjšo  |             |            |                 |
|mero);                        |             |            |                 |
|– reaktor z mirujočo plastjo  |   (0,1 ng   |   Visoki   |                 |
|ali z zvrtinčenim curkom z    |    TE/m3)   |            |                 |
|adsorpcijo z aktivnim ogljem  |             |            |                 |
|ali s prahom metalurškega     |             |            |                 |
|koksa;                        |             |            |                 |
|– katalitska oksidacija, in   |0,1 ng TE/m3)|   Visoki   |                 |
|– skrajšanje zadrževalnega    |             |            |                 |
|časa v kritičnem              |             |            |                 |
|temperaturnem območju v       |             |            |                 |
|sistemu odpadnih plinov.      |             |            |                 |
|Proizvodnja železa in jekla   |             |            |                 |
|                              |             |            |                 |
|Primarni ukrepi:              |             |            |                 |
|– čiščenje olja s sekundarnih |             |    Nizki   |Uporabiti je     |
|surovin pred nalaganjem v     |             |            |treba čistilne   |
|proizvodne posode;            |             |            |raztopine        |
|– odstranjevanje naključnega  |             |   Nizki    |                 |
|organskega materiala, kot so  |             |            |                 |
|olja, emulzije, maščobe,      |             |            |                 |
|barva in plastika pri         |             |            |                 |
|čiščenju vhodnega materiala;  |             |            |                 |
|– zmanjševanje specifično     |             |  Srednji   |                 |
|visokih količin odpadnih      |             |            |                 |
|plinov;                       |             |            |                 |
|– ločeno zbiranje in obdelava |             |   Nizki    |                 |
|emisij pri polnjenju in       |             |            |                 |
|praznjenju.                   |             |            |                 |
|Sekundarni ukrepi:            |             |            |                 |
|– ločeno zbiranje in obdelava |             |   Nizki    |                 |
|emisij pri polnjenju in       |             |            |                 |
|praznjenju;                   |             |            |                 |
|– vrečasti filtri v povezavi  |      <1     |  Srednji   |                 |
|z vbrizgavanjem koksa.        |             |            |                 |
|Sekundarna proizvodnja aluminija                                           |
|Primarni ukrepi:              |             |            |                 |
|– izogibanje halogeniranemu   |             |   Nizki    |                 |
|materialu (heksakloretan);    |             |            |                 |
|– izogibanje mazivom, ki      |             |   Nizki    |                 |
|vsebujejo klor (na primer     |             |            |                 |
|klorirani parafini), in       |             |            |                 |
|– čiščenje in razvrščanje     |             |            |                 |
|onesnaženih sekundarnih       |             |            |                 |
|surovin, na primer            |             |            |                 |
|odstranjevanje plasti         |             |            |                 |
|površinskih nanosov z         |             |            |                 |
|ostružki in sušenje,          |             |            |                 |
|ločevanje s tehniko ločevanja |             |            |                 |
|na podlagi različnih gostot   |             |            |                 |
|usedanje v vrtinčastem toku.  |             |            |                 |
|Sekundarni ukrepi:            |             |            |                 |
|– enostopenjski ali           |     < 1     |  Srednji/  |                 |
|večstopenjski vrečasti filter |   (0,1 ng   |   visoki   |                 |
|in aktiviranje                |    TE/m3)   |            |                 |
|apnenca/aktivnega oglja pred  |             |            |                 |
|filtrom;                      |             |            |                 |
|– zmanjšanje pretokov na      |             |  Srednji/  |                 |
|najmanjšo mero ter ločeno     |             |   visoki   |                 |
|odvajanje in čiščenje         |             |            |                 |
|različno onesnaženih odpadnih |             |            |                 |
|plinov;                       |             |            |                 |
|– preprečevanje usedanja      |             |  Srednji/  |                 |
|delcev iz odpadnih plinov in  |             |   visoki   |                 |
|omogočanje hitrega prehoda    |             |            |                 |
|skozi kritična temperaturna   |             |            |                 |
|območja, in                   |             |            |                 |
|– izboljšanje predobdelave    |             |  Srednji/  |                 |
|aluminijskih sekundarnih      |             |   visoki   |                 |
|surovin z drobilnikom z       |             |            |                 |
|uporabo tehnike ločevanja na  |             |            |                 |
|podlagi različnih gostot,     |             |            |                 |
|razvrščanje z usedanjem v     |             |            |                 |
|vrtinčastem toku.             |             |            |                 |
    (a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za 
Obrati za sintranje
26. Meritve v obratih za sintranje v železarstvu in jeklarstvu običajno pokažejo emisije PCDD/F v razponu od 0,4 do 4 ng TE/m3. Enkratne meritve v nekem obratu, v katerem ni nobenih ukrepov za nadzor nad emisijami, so pokazale koncentracijo 43 ng TE/m3.
27. Halogenirane spojine imajo lahko za posledico nastajanje PCDD/F, če pridejo v napravo za sintranje z vhodnimi materiali (koksova žlindra, sol, vsebovana v rudi) ali z dodanimi recikliranimi materiali (na primer valjarniška škaja, prah iz žrelnih plavžnih plinov, prah iz filtrov ali blato iz naprav za čiščenje odpadnih vod). Podobno kot pri sežiganju odpadkov pa tudi tukaj ni jasne povezave med vsebnostjo klora v vhodnem materialu in emisijami PCDD/F. Primerna ukrepa bi bila lahko izogibanje onesnaženim odpadkom in razmaščevanje valjarniške škaje, preden pride v napravo za sintranje.
28. Najučinkovitejše zmanjšanje emisij PCDD/F je mogoče doseči s kombinacijo različnih sekundarnih ukrepov:
(a) recirkulacija odpadnih plinov znatno zmanjša emisije PCDD/F. Poleg tega se znatno zmanjša pretok odpadnih plinov, s čimer se zmanjšajo stroški vgraditve morebitnih dodatnih sistemov nadzora nad emisijami na izhodnem delu;
(b) vgraditev vrečastih filtrov (ponekod v kombinaciji z elektrofiltri) ali elektrofiltrov z vbrizgavanjem mešanic aktivnega oglja/metalurškega koksa/apnenca v odpadne pline;
(c) metode izločanja prahu, katerih del je tudi predhodno pranje odpadnih plinov, luženje z intenzivnim izločanjem prahu in ločevanje z odcejanjem. Doseči je mogoče emisije od 0,2 do 0,4 ng TE/m3. Z dodajanjem ustreznega adsorpcijskega sredstva, na primer lignitnega koksa/premogovega drobirja, je mogoče doseči koncentracijo emisij 0,1 ng TE/m3.
Primarna in sekundarna proizvodnja bakra
29. V obstoječih obratih za primarno in sekundarno proizvodnjo bakra se lahko doseže po čiščenju dimnih plinov stopnja emisije PCDD/F od nekaj pikogramov do 2 ng TE/m3. Emisije ene same jaškovne peči za baker so pred optimiziranjem agregatov znašale do 29 ng TE/m3 PCDD/F. Običajno obstaja velik razpon emisijskih vrednosti PCDD/F iz teh obratov zaradi velikih razlik v surovini, ki se uporablja v različnih agregatih in tehnoloških postopkih.
30. Na splošno so za zmanjšanje emisij PCDD/F primerni naslednji ukrepi:
(a) predhodno razvrščanje sekundarnih surovin;
(b) predhodna obdelava sekundarnih surovin, na primer odstranjevanje plastičnih ali PVC-nanosov, predhodna obdelava odpadnih kablov z uporabo izključno hladnih/mehanskih metod;
(c) pranje vročih odpadnih plinov (možnost koristne uporabe toplote), s čimer se skrajša zadrževalni čas v kritičnem temperaturnem območju v sistemu odpadnih plinov;
(d) uporaba kisika ali s kisikom obogatenega zraka pri gorenju ali vbrizgavanje kisika v jaškovno peč (zagotovitev popolnega zgorevanja in zmanjšanje količine odpadnih plinov na najmanjšo mero);
(e) adsorpcija v reaktorju z mirujočo plastjo ali z zvrtinčenim curkom z aktivnim ogljem ali s prahom metalurškega koksa;
(f) katalitska oksidacija.
Proizvodnja jekla
31. Emisije PCDD/F iz jeklarskih konverterjev za proizvodnjo jekla in iz kupolk na vroč zrak, iz elektropeči in iz elektroobločnih peči za taljenje litega železa so znatno nižje od 0,1 ng TE/m3. Za plavže na hladen zrak in rotacijske peči (taljenje litega železa) so značilne večje emisije PCDD/F.
32. Pri elektroobločnih pečeh, ki se uporabljajo v sekundarni jeklarski proizvodnji, se lahko doseže vrednost koncentracije emisij 0,1 ng TE/m3 ob uporabi naslednjih ukrepov:
(a) ločeno zbiranje emisij pri polnjenju in praznjenju ter
(b) uporaba vrečastih filtrov ali elektrofiltrov v povezavi z vbrizgavanjem koksa.
33. Vhodni material za elektroobločne peči pogosto vsebuje olja, emulzije ali maščobe. Običajni primarni ukrepi za zmanjšanje PCDD/F so razvrščanje, razmaščevanje in odstranjevanje plasti površinskih nanosov s sekundarnih surovin, ki lahko vsebujejo plastiko, gumo, barve, pigmente in vulkanizacijske dodatke.
Talilnice v sekundarni aluminijski industriji
34. Emisije PCDD/F iz talilnic v sekundarni aluminijski industriji se gibljejo v razponu od približno 0,1 do 14 ng TE/m3. Stopnje emisij so odvisne od vrste talilnih agregatov, uporabljenih materialov in uporabljenih tehnik čiščenja odpadnih plinov.
35. Enostopenjski ali večstopenjski vrečasti filter v povezavi z apnencem/aktivnim ogljem/metalurškim koksom pred filtrom torej zadošča zahtevi po koncentraciji emisij 0,1 ng TE/m3, s tem da je učinkovitost zmanjšanja 99-odstotna.
36. Upoštevajo se lahko tudi naslednji ukrepi:
(a) zmanjšanje pretokov na najmanjšo mero ter ločeno odvajanje in čiščenje različno onesnaženih odpadnih plinov;
(b) preprečevanje usedanja delcev iz odpadnih plinov;
(c) hiter prehod skozi kritična temperaturna območja;
(d) izboljšanje predhodnega razvrščanja sekundarnih aluminijskih surovin z drobilnikom z uporabo tehnike ločevanja na podlagi različnih gostot in razvrščanje z usedanjem v vrtinčastem toku;
(e) izboljšanje predhodnega čiščenja sekundarnih aluminijskih surovin z odstranjevanjem površinskih nanosov in sušenje.
37. Možnosti (d) in (e) sta pomembni, ker ni verjetno, da bi se s sodobnimi tehnikami taljenja (pri katerih ni tokov halogenidov) lahko predelale tudi sekundarne surovine nižje kakovosti, ki jih je mogoče uporabiti v rotacijskih pečeh.
38. V okviru Konvencije o varstvu morskega okolja severovzhodnega Atlantika še vedno potekajo razprave o reviziji prejšnjega priporočila, naj se postopno opusti uporaba heksakloretana v aluminijski industriji.
39. Talino je mogoče obdelati s sodobno tehnologijo, na primer z mešanico dušika in klora v razmerjih med 9: 1 in 8: 2, z opremo za vbrizgavanje plina za fino disperzijo, s predhodnim in naknadnim prepihovanjem z dušikom in z vakuumskim razmaščevanjem. Ob uporabi mešanice dušika in klora je bila izmerjena koncentracija emisij PCDD/F približno 0,03 ng TE/m3 (v primerjavi z vrednostmi > 1 ng TE/m3, doseženimi pri obdelavi samo s klorom). Klor je potreben za odstranjevanje magnezija in drugih nezaželenih sestavin.
C. Zgorevanje fosilnih goriv v elektrarnah in toplarnah ter industrijskih kotlovnicah
40. Zaradi izboljšanja energetskega izkoristka in varčevanja z energijo pri zgorevanju fosilnih goriv v elektrarnah in toplarnah ter industrijskih kotlovnicah (toplotna zmogljivost > 50 MW) se zmanjša potreba po gorivu in s tem se zmanjšajo emisije vseh onesnaževal. Zaradi tega se zmanjšajo tudi emisije PCDD/F. Odstranjevanje klora iz premoga ali olja ne bi bilo gospodarno, vsekakor pa bo usmeritev v uporabo plina pripomoglo k zmanjšanju emisij PCDD/F v tem sektorju.
41. Upoštevati je treba, da se emisije PCDD/F lahko znatno povečajo, če se gorivu dodajo odpadki (blato iz čistilnih naprav za odpadne vode, odpadno olje, gumijasti odpadki itn.). Sežiganje odpadkov za pridobivanje energije je dopustno le tam, kjer obstaja sistem za čiščenje odpadnih plinov, ki zagotavlja zelo učinkovito zmanjšanje PCDD/F (opisano v razdelku A zgoraj).
42. Z uporabo tehnik za zmanjšanje emisij dušikovih oksidov, žveplovega dioksida in delcev iz dimnih plinov se lahko odpravijo tudi emisije PCDD/F. Pri uporabi teh tehnik se bo učinkovitost odstranjevanja PCDD/F razlikovala od obrata do obrata. Nenehno potekajo raziskave, kako izboljšati tehnike odstranjevanja PCDD/F, vendar dokler ne bodo na voljo v industrijskem merilu, ni mogoče nobene izrecno označiti kot najboljšo razpoložljivo tehniko za odstranjevanje PCDD/F.
D. Kurjenje v gospodinjstvih
43. Prispevek naprav za kurjenje v gospodinjstvih k skupni emisiji PCDD/F je manjši, kadar so dovoljena goriva pravilno uporabljena. Poleg tega lahko zaradi različnih vrst in kakovosti goriva, gostote naprav na določenem zemljepisnem območju in različne uporabe pride do velikih regionalnih razlik v emisijah.
44. Kurišča v gospodinjstvih imajo slabši izkoristek dimnih plinov in slabšo stopnjo zgorevanja ogljikovodikov v gorivih kot velike zgorevalne naprave. To velja še posebej takrat, kadar se uporabljajo trdna goriva, kot sta les in premog, ko se koncentracije emisij PCDD/F gibljejo med 0,1 do 0,7 ng TE/m3.
45. Pri kurjenju embalaže, dodane trdnim gorivom, se povečajo emisije PCDD/F. Čeprav je to v nekaterih državah prepovedano, se dogaja, da v gospodinjstvih kurijo smeti in embalažo. Zaradi vse višjih stroškov za odvažanje smeti se dogaja, da se odpadki iz gospodinjstva kurijo v domačih kuriščih. Uporaba lesa z dodano odpadno embalažo lahko povzroči povečanje emisij PCDD/F z 0,06 ng TE/m3 (izključno les) na 8 ng TE/m3 (preračunano na 11 volumskih odstotkov O(2)). Te izsledke so potrdile raziskave v več državah, kjer so izmerili do 114 ng TE/m3 (preračunano na 13 volumskih odstotkov kisika) v dimnih plinih iz kurilnih naprav v gospodinjstvih, kjer se kuri odpadni material.
46. Emisije iz kurilnih naprav v gospodinjstvih je mogoče zmanjšati z omejevanjem vhodnega materiala na kakovostno gorivo in s preprečevanjem kurjenja odpadkov, halogeniranih plastičnih snovi in drugih materialov. Pri doseganju tega cilja lahko pripomorejo programi seznanjanja kupcev/uporabnikov kurilnih naprav za gospodinjstva.
E. Naprave za kurjenje lesa (zmogljivost < 50 MW)
47. Rezultati meritev kažejo, da se pri napravah za kurjenje lesa pojavljajo emisije PCDD/F nad 0,1 ng TE/m3 v dimnih plinih predvsem v neugodnih razmerah zgorevanja in/ali kadar je v gorečih snoveh večja vsebnost kloriranih sestavin kot v neobdelanem lesu. Skupna koncentracija ogljika v dimnih plinih je znak slabega zgorevanja. Ugotovljene so bile povezave med emisijami CO, kakovostjo zgorevanja in emisijami PCDD/F. Preglednica 3 je povzetek nekaterih koncentracij in faktorjev emisij, ki veljajo za naprave za kurjenje lesa.
Preglednica 3: Razpon koncentracij in faktorjev emisij pri napravah za kurjenje lesa
|         Gorivo         |Koncentracija emisije (ng|   Faktor  |   Faktor   |
|                        |         TE/m3)          |  emisije  |   emisije  |
|                        |                         | (ng TE/kg)|   (ng/GJ)  |
|Naravni les (bukev)     |        0,02–0,10        |  0,23–1,3 |    12–70   |
|Drobir naravnega lesa   |        0,07–0,21        |  0,79–2,6 |   43–140   |
|iz gozda                |                         |           |            |
|Iverna plošča           |        0,02–0,08        |  0,29–0,9 |    16–50   |
|Gradbeni odpadni les    |        2,7–14,4         |   26–173  |  1400–9400 |
|Odpadki iz              |           114           |    3230   |            |
|gospodinjstva           |                         |           |            |
|Oglje                   |          0,03           |           |            |
48. Zgorevanje odpadkov gradbenega lesa (odpadnega gradbenega lesa) na pomičnem kurišču povzroča razmeroma visoke emisije PCDD/F v primerjavi z zgorevanjem naravnega lesa. Primarni ukrep za zmanjšanje emisij je izogibanje uporabi obdelanega odpadnega lesa v napravah za kurjenje lesa. Za zmanjšanje emisij PCDD/F na najmanjšo mero bi bilo treba obdelani les kuriti le v napravah z ustreznim čiščenjem dimnih plinov.
A. Proizvodnja koksa
49. Med proizvodnjo koksa se PAH sproščajo v zrak predvsem:
(a) med polnjenjem peči skozi odprtine za polnjenje;
(b) zaradi uhajanja skozi vrata peči, po odvodnih ceveh in skozi pokrove odprtin za polnjenje in
(c) pri potiskanju in ohlajanju koksa.
50. Koncentracija benzo(a)pirena (BaP) znatno niha med posameznimi viri v koksarniški bateriji. Največje koncentracije BaP so na vrhu baterije in v neposredni bližini vrat.
51. Emisije PAH iz proizvodnje koksa je mogoče zmanjšati s tehničnim izboljševanjem obstoječih integriranih železarskih in jeklarskih obratov. Da bi to dosegli, bo morda treba zapreti in zamenjati stare koksarniške baterije ter v celoti zmanjšati proizvodnjo koksa, na primer z vbrizgavanjem visokokaloričnega premoga v proizvodnji jekla.
52. Strategija zmanjšanja emisij PAH iz koksarniških baterij bi morala vključevati naslednje tehnične ukrepe:
(a) polnjenje koksarniških peči:
– zmanjšanje emisij delcev pri nakladanju premoga iz bunkerja na polnilne vozičke;
– zaprti sistemi za prenos premoga, kadar se uporablja predgretje premoga;
– izločanje polnilnih plinov in njihova poznejša obdelava, in sicer tako da se spustijo v sosednjo peč ali skozi zbiralni vod v sežigalnico in potem še skozi odpraševalno napravo. Ponekod se izločeni polnilni plini sežigajo na polnilnih vozičkih, vendar sta vpliv na okolje in varnost sistemov, pri katerih se uporabljajo polnilnih vozičkih, manj zadovoljiva. Zagotoviti je treba zadosten vlek z vbrizgavanjem pare ali vode v odvodne cevi;
(b) emisije pri pokrovih odprtin za polnjenje med koksanjem je mogoče preprečevati:
– s pokrovi, ki zelo dobro tesnijo;
– z ognjevzdržno zatesnitvijo pokrovov z glino (ali drugim enako učinkovitim materialom) po vsakem polnjenju;
– s čiščenjem pokrovov in okvirov, preden se odprtina zapre;
– tako da se zagotovi, da na stropovih peči ni ostankov premoga;
(c) pokrovi odvodnih cevi bi morali imeti vodno tesnjenje, ki preprečuje emisije plinov in katrana, pravilno delovanje vodnega tesnjenja pa bi bilo treba zagotavljati z rednim čiščenjem;
(d) mehanizem za upravljanje vrat koksarniške peči bi moral biti opremljen s sistemom za čiščenje površine tesnil na okvirih vrat in na vratih;
(e) vrata koksarniške peči:
– uporabljati bi bilo treba zelo učinkovito tesnjenje (na primer opnasta vrata na vzmet);
– tesnila na okvirih vrat in na vratih peči bi bilo treba temeljito očistiti ob vsaki uporabi;
– vrata bi morala biti oblikovana tako, da bi omogočila vgraditev sistemov za izločanje delcev s priključkom na odpraševalno napravo (prek zbiralnega voda) med potiskanjem;
(f) naprava za prenos koksa bi morala imeti vgrajeno napo, nepremični kanal in nepremični sistem za čiščenje plinov (po možnosti vrečasti filter);
(g) za hlajenje koksa bi bilo treba uporabljati postopke z majhnimi emisijami, na primer suho hlajenje koksa. Najbolje bi bilo nadomestiti mokro hlajenja koksa s suhim hlajenjem pod pogojem, da se uporablja zaprt obtočni sistem, s čimer se prepreči nastajanje odpadne vode. Pri ravnanju s suho hlajenim koksom bi bilo treba zmanjšati nastajanje prahu.
53. Pri postopku proizvodnje koksa, imenovanem »koksanje brez zbiranja stranskih proizvodov za ponovno rabo«, prihaja do bistveno manjših emisij PAH kot pri bolj klasičnem postopku, pri katerem se zbirajo stranski proizvodi, in sicer zato ker peči delujejo pod negativnim tlakom, s čimer se prepreči uhajanje v ozračje pri vratih peči. Med koksanjem se surovi koksarniški plin odstranjuje s pomočjo naravnega vleka, ki v pečeh ohranja negativni tlak. Te peči niso zasnovane za zbiranje kemičnih stranskih produktov iz surovega koksarniškega plina. Pline, ki nastajajo pri koksanju (vključno s PAH), pa je mogoče učinkovito sežigati pri visokih temperaturah in dolgem zadrževalnem času. Odpadna toplota iz teh sežigalnic se uporablja za pridobivanje energije za koksanje, odvečno toploto pa je mogoče uporabiti za pridobivanje pare. Zaradi gospodarnosti bi lahko pri tej vrsti koksanja potrebovali dodatno enoto za proizvajanje elektrike iz odvečne pare. Trenutno obratujeta le dve taki koksarni brez zbiranja stranskih produktov, ena v ZDA in druga v Avstraliji. Bistvo tehnološkega postopa je koksarniška peč z enim samim dimovodom za pridobivanje koksa brez zbiranja stranskih produktov in s sežigalno komoro ob dveh pečeh. Postopek polnjenja in koksanja poteka izmenično v eni in drugi peči. Tako ena od peči vedno dovaja koksarniški plin v sežigalno komoro. Zgorevanje plina v sežigalni komori zagotavlja vir toplote. Sežigalna komora je zasnovana tako, da zagotavlja potreben zadrževalni čas (približno 1 sekunda) in visoko temperaturo (najmanj 900 °C).
54. Zagotoviti bi bilo treba učinkovit program spremljanja morebitnega slabega tesnjenja pri vratih peči, odvodnih ceveh in pokrovih odprtin za polnjenje. To vključuje spremljanje in ugotavljanje slabega tesnjenja in takojšnje popravilo oziroma vzdrževanje. Tako je mogoče doseči znatno zmanjšanje razpršenih emisij.
55. S prilagajanjem že obstoječih koksarniških baterij, da bi se olajšala kondenzacija dimnih plinov iz vseh virov (z zbiranjem toplote), se zmanjšanje emisije PAH v zrak poveča s 86 odstotkov na več kot 90 odstotkov (brez upoštevanja obdelave odpadnih vod). Če se upoštevajo zbrana in ponovno uporabljena energija, ogreta voda, plin za sintezo in prihranjena hladilna voda, je mogoče amortizirati stroške naložbe v petih letih.
56. S povečevanjem prostornin koksarniških peči se zmanjša skupno število peči, odprtin na pečeh (količine potiskov skozi peč na dan), tesnil na koksarniški bateriji in s tem tudi emisije PAH. Zaradi znižanja stroškov obratovanja in delovne sile se poveča tudi produktivnost.
57. Sistemi suhega hlajenja koksa pomenijo večje stroške naložbe kot mokri sistemi. Višje obratovalne stroške je mogoče nadomestiti z zbiranjem in ponovno uporabo toplote v postopku predgrevanja koksa. Energijski izkoristek kombiniranega suhega hlajenja koksa/sistema predgrevanja premoga se zviša z 38 na 65%. Predgrevanje premoga poveča produktivnost za 30%. To je mogoče povečati celo na 40%, ker je proces koksanja bolj homogen.
58. Vsi rezervoarji in oprema za shranjevanje in obdelavo premogovega katrana in z njim povezanih produktov bi morali biti opremljeni z učinkovitim sistemom za zbiranje in/ali uničevanje hlapov. Obratovalne stroške sistemov za uničevanje hlapov je mogoče znižati z naknadnim zgorevanjem brez dovajanja toplote, če je koncentracija ogljikovih spojin v odpadkih dovolj visoka.
59. V preglednici 4 je povzetek ukrepov za zmanjšanje emisij PAH v koksarnah.
Preglednica 4: Nadzorovanje emisij PAH pri koksanju
|           Ukrep           |Stopnja | Ocena stroškov  | Težave/ugotovitve  |
|                           | emisij |                 |                    |
|                           |  (%)   |                 |                    |
|                           |  (a/)  |                 |                    |
|Prilagajanje starih obratov| Skupno |Visoki           |Emisije v odpadno   |
|s kondenzacijo dimnih      |  <10   |                 |vodo so pri vodnem  |
|plinov iz vseh virov       | (brez  |                 |hlajenju zelo       |
|vključuje naslednje ukrepe:|odpadne |                 |velike. Ta metoda se|
|                           | vode)  |                 |lahko uporablja le, |
|                           |        |                 |če se voda ponovno  |
|                           |        |                 |uporabi v zaprtem   |
|                           |        |                 |sistemu.            |
|– odvajanje in naknadno    |   5    |(Amortizacija    |                    |
|zgorevanje polnilnih plinov|        |stroškov naložbe |                    |
|med polnjenjem peči ali    |        |je mogoča v 5    |                    |
|spuščanjem plinov v        |        |letih, če se     |                    |
|sosednjo peč, če je mogoče;|        |upoštevajo zbrana|                    |
|                           |        |in ponovno       |                    |
|                           |        |uporabljena      |                    |
|                           |        |energija, ogreta |                    |
|                           |        |voda, plin za    |                    |
|                           |        |sintezo in       |                    |
|                           |        |prihranjena      |                    |
|                           |        |hladilna voda.)  |                    |
|– čim boljše preprečevanje |  < 5   |                 |                    |
|emisij pri pokrovih odprtin|        |                 |                    |
|za polnjenje, na primer s  |        |                 |                    |
|posebno zasnovo pokrovov in|        |                 |                    |
|z učinkovitimi metodami    |        |                 |                    |
|tesnjenja. Uporabljati je  |        |                 |                    |
|treba zelo učinkovito      |        |                 |                    |
|zatesnjena vrata peči za   |        |                 |                    |
|koksanje. Čiščenje okvirov |        |                 |                    |
|in pokrovov odprtin za     |        |                 |                    |
|polnjenje, preden se       |        |                 |                    |
|zaprejo;                   |        |                 |                    |
|– odpadne pline pri        |  < 5   |                 |                    |
|potiskanju je treba zbirati|        |                 |                    |
|v skupni vod in odvajati v |        |                 |                    |
|odpraševalno napravo;      |        |                 |                    |
|– mokro hlajenje koksa je  |        |                 |                    |
|mogoče le, če pri tem ne   |        |                 |                    |
|nastaja odpadna voda.      |        |                 |                    |
|Postopki hlajenja koksa z  |   Ni   |Večji stroški    |                    |
|majhnimi emisijami, na     | emisij |naložbe kot za   |                    |
|primer suho hlajenje.      |v vodo. |mokro hlajenje (a|                    |
|                           |        |nižji stroški ob |                    |
|                           |        |predgrevanju     |                    |
|                           |        |koksa in uporabi |                    |
|                           |        |odpadne toplote).|                    |
|Večja uporaba              |Znatna. |Naložba približno|Večinoma je potrebna|
|visokoprostorninskih peči, |        |10% višja kot za |popolna prilagoditev|
|s čimer se zmanjšata       |        |klasično         |ali pa vgradnja nove|
|število odprtin in površina|        |koksarno.        |naprave za koksanje.|
|zatesnjenih mest.          |        |                 |                    |
     (a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za
B. Proizvodnja anod
60. Emisije PAH iz proizvodnje anod je treba obravnavati podobno kot emisije iz proizvodnje koksa.
61. Za zmanjšanje emisij prahu, onesnaženega s PAH, se uporabljajo naslednji sekundarni ukrepi:
(a) elektrostatično izločanje katrana;
(b) kombinacija klasičnega elektrofiltra za katran in mokrega elektrofiltra kot učinkovitejšega tehničnega ukrepa;
(c) toplotno naknadno zgorevanje odpadnih plinov in
(d) suho čiščenje prahu z apnencem/petrolkoksom ali aluminijevim oksidom (Al(2)O(3)).
62. Obratovalne stroške za postopek toplotnega naknadnega zgorevanja je mogoče zmanjšati s pomočjo naknadnega zgorevanja brez dovajanja toplote, če je koncentracija ogljikovih spojin v odpadnem plinu dovolj visoka. V preglednici 5 je povzetek ukrepov za zmanjšanje emisij PAH pri proizvodnji anod.
Preglednica 5: Nadzorovanje emisij PAH pri proizvodnji anod
|           Ukrep            |Stopnja |    Ocena    |   Težave/ugotovitve   |
|                            | emisij |  stroškov   |                       |
|                            |  (%)   |             |                       |
|                            |  (a/)  |             |                       |
|Posodabljanje starih        |  3–10  |Visoki       |                       |
|obratov z zmanjševanjem     |        |             |                       |
|razpršenih emisij vključuje |        |             |                       |
|naslednje ukrepe:           |        |             |                       |
|– zmanjšanje uhajanja;      |        |             |                       |
|– namestitev prožnih tesnil |        |             |                       |
|na vrata peči;              |        |             |                       |
|– odvajanje in poznejša     |        |             |                       |
|obdelava polnilnih plinov   |        |             |                       |
|bodisi z odvajanjem v       |        |             |                       |
|sosednjo peč bodisi skozi   |        |             |                       |
|zbirni vod v sežigalnico in |        |             |                       |
|potem še v odpraševalno     |        |             |                       |
|napravo na tleh;            |        |             |                       |
|– hladilni sistemi za       |        |             |                       |
|koksarniške peči in         |        |             |                       |
|– odvajanje in čiščenje     |        |             |                       |
|emisij delcev koksa.        |        |             |                       |
|Uveljavljene tehnologije za | 45–50  |             |Uporabljeno na Nizo-   |
|proizvodnjo anod na         |        |             |zemskem leta 1990.     |
|Nizozemskem:                |        |             |Čiščenje prahu z       |
|                            |        |             |apnencem ali           |
|                            |        |             |petrolkoksom je        |
|                            |        |             |učinkovito za          |
|                            |        |             |zmanjševanje PAH; z    |
|                            |        |             |aluminijem ni znano.   |
|– nova peč s suhim          |        |             |                       |
|pralnikom prahu (z          |        |             |                       |
|apnencem/petrolkoksom ali z |        |             |                       |
|aluminijem);                |        |             |                       |
|– recikliranje odpadne      |        |             |                       |
|vode.                       |        |             |                       |
|Najboljši razpoložljivi     |        |             |                       |
|tehniki (BAT):              |        |             |                       |
|– elektrostatično           |  2–5   |             |Potrebno je redno      |
|odpraševanje in             |        |             |čiščenje katrana.      |
|– naknadno toplotno         |   15   |Nižji        |Način brez dovajanje   |
|sežiganje                   |        |obratovalni  |toplote le, če je      |
|                            |        |stroški pri  |koncentracija PAH v    |
|                            |        |načinu brez  |odpadnem plinu visoka. |
|                            |        |dovajanja    |                       |
|                            |        |toplote.     |                       |
(a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za 
C. Aluminijska industrija
63. Aluminij se proizvaja iz aluminijevega oksida (Al(2)O(3)) z elektrolizo v zaporedno vezanih posodah (celicah). Glede na vrsto anode gre bodisi za posode s predpečenimi anodami bodisi za Soederbergove posode.
64. Posode s predpečenimi anodami so opremljene z anodami kalciniranih (žganih) blokov ogljika, ki se po delni porabi zamenjajo. Soederbergove anode so žgane v celici z mešanico petrolkoksa in katranske smole, ki deluje kot vezivo.
65. Pri Soederbergovem postopku se sproščajo zelo velike emisije PAH. Med primarne ukrepe zmanjševanja emisij sodita posodabljanje obstoječih obratov in optimiziranje tehnoloških postopkov, s katerimi bi bilo mogoče zmanjšati emisije PAH za 70 do 90%. Doseči je mogoče stopnjo emisije 0,015 kg B(a)P/tono aluminija. Zamenjava obstoječih Soederbergovih celic s predpečenimi anodami bi sicer zahtevala obsežno rekonstrukcijo obstoječega postopka, vendar bi skoraj v celoti odpravila emisije PAH. Investicijski stroški za tako zamenjavo so zelo visoki.
66. V preglednici 6 je povzetek ukrepov za zmanjšanje emisij PAH iz proizvodnje aluminija.
Preglednica 6: Nadzor nad emisijami PAH pri proizvodnji aluminija s Soederbergovim postopkom
|         Ukrep        |Stopnja | Ocena stroškov |    Težave/ugotovitve     |
|                      | emisij |                |                          |
|                      |  (%)   |                |                          |
|                      |  (a/)  |                |                          |
|Zamenjava             |  3–30  |Višji stroški za|Soederbergove elektrode so|
|Soederbergovih        |        |elektrode,      |cenejše kot predpečene,   |
|elektrod:             |        |približno 800   |ker ni po-treben obrat za |
|– s predpečenimi      |        |mio. USD        |žganje anod. Raziskave    |
|elektrodami (tako se  |        |                |potekajo, vendar niso     |
|je mogoče izogniti    |        |                |obetajoče. Pravilno       |
|uporabi smolnega      |        |                |izvajanje postopka in     |
|veziva);              |        |                |spremljanje emisij sta    |
|– z inertnimi anodami.|        |                |bistveni za nadzor nad    |
|                      |        |                |emisijami. Slabo delovanje|
|                      |        |                |naprav lahko povzroči     |
|                      |        |                |znatne razpršene emisije. |
|Zaprti sistemi        |  1–5   |                |                          |
|predpečenja s         |        |                |                          |
|centralnim doziranjem |        |                |                          |
|aluminijevega oksida  |        |                |                          |
|in učinkovitim        |        |                |                          |
|nadzorovanjem         |        |                |                          |
|postopka, z napami, ki|        |                |                          |
|pokrivajo celotno     |        |                |                          |
|posodo in omogočajo   |        |                |                          |
|učinkovito zbiranje   |        |                |                          |
|onesnaževal zraka.    |        |                |                          |
|Soederbergova posoda z|  > 10  |Prilagoditev    |Pri polnjenju, drobljenju |
|navpičnimi kontaktnimi|        |Soederbergove   |skorje in dviganju        |
|elementi in sistemi za|        |tehnologije z   |železnih kontaktnih       |
|zbiranje odpadnih     |        |zaprtjem in s   |elementov na višji položaj|
|plinov.               |        |spremenjeno     |se pojavljajo razpršene   |
|                      |        |točko polnjenja:|emisije.                  |
|                      |        |10.000–50.000   |                          |
|                      |        |USD/peč         |                          |
|Tehnologija Sumitomo  |        |Srednji–visoki  |                          |
|(anodni briketi za    |        |                |                          |
|postopek VSS).        |        |                |                          |
|Čiščenje plinov:      |        |                |                          |
|– elektrofiltri za    |  2–5   |Nizki           |Visoka stopnja iskrenja in|
|katran;               |        |                |obločnih prebojev;        |
|– kombinacija         |  > 1   |Srednji         |Pri mokrem plinskem       |
|klasičnih             |        |                |čiščenju nastaja odpadna  |
|elektrofiltrov za     |        |                |voda.                     |
|katran z              |        |                |                          |
|elektrostatičnim      |        |                |                          |
|mokrim plinskim       |        |                |                          |
|čiščenjem;            |        |                |                          |
|– naknadno toplotno   |        |                |                          |
|sežiganje.            |        |                |                          |
|Uporaba smole z višjim| Visoka |Srednji         |                          |
|tališčem (HSS + VSS). |        |Nizki–srednji   |                          |
|Suho čiščenje v       |        |Srednji–visoki  |                          |
|obstoječih napravah   |        |                |                          |
|HSS + VSS.            |        |                |                          |
(a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za 
D. Kurjenje v gospodinjstvih
67. Emisije PAH iz kurišč v gospodinjstvih je mogoče zaslediti, kadar se v pečeh oziroma štedilnikih ali v odprtih ognjiščih kuri les ali premog. Gospodinjstva so lahko pomemben vir emisij PAH. To je posledica uporabe trdnih goriv v ognjišč in malih kurilnih napravah v gospodinjstvih. V nekaterih državah je običajno gorivo za peči in štedilnike premog. Zaradi višje temperature zgorevanja in enakomernejše kakovosti goriva so emisije PAH iz peči na premog manjše kot iz peči na drva.
68. Poleg tega je mogoče učinkovito zmanjšati emisije PAH iz gospodinjstev z izboljšanjem lastnosti zgorevalnih sistemov (na primer hitrost zgorevanja). Med izboljšane lastnosti zgorevalnih sistemov sodita boljša zasnova zgorevalne komore in izboljšan dovod zraka. Na voljo je več tehnik za izboljšanje lastnosti zgorevalnih sistemov in zmanjšanje emisij. Glede na različne tehnike se stopnja emisij bistveno razlikuje. Z uporabo sodobnih kotlov na les z zbirno posodo za vodo, ki so ena od tehnik BAT, se zmanjšajo emisije za več kot 90% v primerjavi z zastarelimi kotli brez zbirne posode za vodo. Sodobni kotel ima tri prekate: kurišče za uplinjanje lesa, prekat za zgorevanje plina s keramiko ali kakšnim drugim materialom, ki omogoča temperaturo okrog 1000 °C, in konvekcijski prekat. Konvekcijski del, kjer voda absorbira toploto, mora biti dovolj dolg in učinkovit, da se temperatura plinov lahko zmanjša s 1000 °C na 250 °C ali manj. Obstaja tudi več načinov, kako nadomestiti stare in zastarele kotle, na primer z zbirnimi posodami za vodo, keramičnimi vložki in briketnimi gorilniki.
69. Z izboljšanjem hitrosti zgorevanja se zmanjšajo emisije ogljikovega monoksida (CO), skupnih ogljikovodikov (- THC) in PAH. Posledica omejitev emisij CO in THC (predpisi o tipskih atestih) so tudi majhne emisije PAH. Merjenje PAH je precej dražje kot merjenje CO, zato je gospodarneje določiti mejne vrednosti za CO in THC. Nadaljuje se delo v zvezi s predlogom za standard CEN za kotle na les in premog do 300 kW (glej preglednico 7).
Preglednica 7: Osnutek standardov CEN leta 1997
|Vrsta    |       |  3  |  2  |  1  |  3  | 2  |  1  |   3   |   2   |   1   |
|         | Učinek|        CO       |      THC       |        Delci          |
|         |  (kW) |                 |                |                       |
|Ročno    |  < 50 |5000 |8000 |25000| 150 |300 |2000 |150/125|180/150|200/180|
|         +-------+-----+-----+-----+-----+----+-----+-------+-------+-------+
|         | 50–150|2500 |5000 |12500| 100 |200 |1500 |150/125|180/150|200/180|
|         +-------+-----+-----+-----+-----+----+-----+-------+-------+-------+
|         | >150– |1200 |2000 |12500| 100 |200 |1500 |150/125|180/150|200/180|
|         |  300  |     |     |     |     |    |     |       |       |       |
|Samodejno|  < 50 |3000 |5000 |15000| 100 |200 |1750 | 150/  |180/150|200/180|
|         |       |     |     |     |     |    |     |  125  |       |       |
|         +-------+-----+-----+-----+-----+----+-----+-------+-------+-------+
|         | 50–150|2500 |4500 |12500| 80  |150 |1250 |150/125|180/150|200/180|
|         +-------+-----+-----+-----+-----+----+-----+-------+-------+-------+
|         | > 150–|1200 |2000 |12500| 80  |150 |1250 |150/125|180/150|200/180|
|         |  300  |     |     |     |     |    |     |       |       |       |
    Opomba: Stopnje emisij v mg/m3 pri 10% O(2).
70. Emisije iz peči in štedilnikov na les v gospodinjstvih je mogoče zmanjšati:
(a) za obstoječe peči in štedilnike z obveščanjem javnosti in s programi ozaveščanja o pravilni uporabi peči in štedilnikov, uporabi izključno neobdelanega lesa, postopkih priprave in pravilnega sušenja lesa, da bi se zmanjšala njegova vlažnost, in
(b) za nove peči in štedilnike z uporabo standardov za izdelke, navedenih v osnutku standarda CEN (in ustreznih standardov za izdelke v ZDA in Kanadi).
71. Obstajajo splošnejši ukrepi za zmanjšanje emisij PAH, in sicer razvoj centraliziranih sistemov za gospodinjstva in ukrepi varčevanja z energijo, na primer boljša toplotna izolacija.
72. Možni ukrepi so navedeni v preglednici 8.
Preglednica 8: Nadzor nad emisijami PAH iz kurišč v gospodinjstvih
|        Ukrep         |   Stopnja   |  Ocena  |     Težave/ugotovitve      |
|                      | emisij (%)  |stroškov |                            |
|                      |    (a/)     |         |                            |
|Uporaba suhega        |   Visoka    |         |                            |
|premoga in lesa (suh  |učinkovitost |         |                            |
|je tisti les, ki je   |             |         |                            |
|bil skladiščen        |             |         |                            |
|najmanj 18 do 24      |             |         |                            |
|mesecev).             |             |         |                            |
|Uporaba suhega        |   Visoka    |         |                            |
|premoga.              |učinkovitost |         |                            |
|Zasnova ogrevalnih    |     55      | Srednji |Treba se bo pogajati s      |
|sistemov na trdna     |             |         |proizvajalci, da bodo uvedli|
|goriva, ki bi         |             |         |sistem atestov za peči in   |
|zagotovila čim boljše |             |         |štedilnike.                 |
|razmere za popolno    |             |         |                            |
|zgorevanje:           |             |         |                            |
|– uplinjevalni        |             |         |                            |
|prekat;               |             |         |                            |
|– zgorevalna komora s |             |         |                            |
|keramično oblogo;     |             |         |                            |
|– učinkovit           |             |         |                            |
|konvekcijski prekat.  |             |         |                            |
|Zbirna posoda za      |             |         |                            |
|vodo.                 |             |         |                            |
|Tehnična navodila za  |    30–40    |  Nizki  |To je mogoče doseči tudi z  |
|učinkovito uporabo.   |             |         |dejavnim obveščanjem        |
|                      |             |         |javnosti ter s praktičnimi  |
|                      |             |         |navodili in predpisi o tipih|
|                      |             |         |peči in štedilnikov         |
|Programi obveščanja   |             |         |                            |
|javnosti o uporabi    |             |         |                            |
|peči na drva.         |             |         |                            |
    (a/) Preostale emisije v primerjavi s stanjem, ko ni ukrepov za
E. Obrati za zaščito lesa
73. Zaščita lesa z derivati premogovega katrana, ki vsebujejo PAH, je lahko pomemben vir emisij PAH v zrak. Do emisij lahko pride med samim postopkom impregniranja, pa tudi med skladiščenjem, prestavljanjem in uporabo impregniranega lesa na prostem.
74. Katranska derivata z najširšo uporabo, ki vsebujeta PAH, sta karbolinej in kreozot. Oba sta destilata premogovega katrana, vsebujeta PAH in sta namenjena zaščiti žaganega lesa pred biološkimi škodljivci.
75. Emisije PAH iz obratov za zaščito lesa in prostorov za skladiščenje je mogoče zmanjšati z uporabo različnih pristopov, uporabljenih bodisi posamezno bodisi skupaj, kot so:
(a) zahteve glede skladiščenja, da bi se preprečilo onesnaževanje prsti in površinske vode z izluženimi PAH in onesnaženo meteorno vodo (na primer skladiščni prostori, zavarovani pred dežjem, nadstreški, ponovna uporaba onesnažene vode v postopku impregniranja, zahteve glede kakovosti izdelkov);
(b) ukrepi za zmanjšanje emisij v ozračje iz obratov za impregniranje (na primer preden se les odpelje v skladišče, ga je treba ohladiti z 90 °C vsaj na 30 °C. Kot tehniko BAT je treba omeniti nadomestno možnost uporabe tlaka vodne pare v podtlačnih razmerah za impregniranje lesa s kreozotom);
(c) za tehniko BAT je mogoče imeti čim ustreznejši nanos zaščitnega sredstva, s katerim se les ustrezno zaščiti in situ, s čimer se zmanjša potreba po zamenjavi, s tem pa tudi zmanjšujejo emisije iz obratov za zaščito lesa;
(d) uporaba izdelkov za zaščito lesa z manjšo vsebnostjo tistih PAH, ki so obstojna organska onesnaževala:
– po možnosti se uporablja modificirani kreozot, ki naj bi bil frakcija z vreliščem med 270 °C in 355 °C, s čimer se zmanjšajo emisije bolj hlapnih PAH in težjih, bolj strupenih PAH;
– odsvetovanje uporabe karbolineja bi prav tako omogočilo zmanjševanje emisij PAH;
(e) presoja in ustrezna uporaba nadomestnih možnosti, na primer tistih, navedenih v preglednici 9, s katerimi se na najmanjšo mero zmanjša uporaba izdelkov, ki vsebujejo PAH.
76. Pri gorenju impregniranega lesa nastajajo emisije PAH in drugih škodljivih snovi. Če se tak les že sežiga, bi moralo gorenje potekati v napravi, ustrezno opremljeni za zmanjševanje emisij.
Preglednica 9: Nadomestne možnosti za zaščitna sredstva, ki vsebujejo PAH
|Ukrep                                    |Težave/ugotovitve                |
|Uporaba nadomestnih materialov v         |Treba je proučiti tudi druga     |
|gradbeništvu:                            |okoljska vprašanja, npr:         |
|– izdelki iz trdega lesa, izdelani po    |– razpoložljivost ustreznih      |
|načelih trajnostnega razvoja (utrjevanje |izdelkov iz lesa;                |
|obrežij, ograje, vrata);                 |                                 |
|– plastika (v hortikulturi);             |– emisije, ki so posledica       |
|                                         |proizvodnje in odlaganja         |
|                                         |plastike, zlasti PVC.            |
|– beton (železniški pragovi);            |                                 |
|– zamenjava umetnih konstrukcij z        |                                 |
|naravnimi (kot so utrjevanje obrežij,    |                                 |
|ograje itn.);                            |                                 |
|– uporaba nezaščitenega lesa.            |                                 |
|Razvija se več nadomestnih načinov za    |                                 |
|zaščito lesa, pri katerih se ne          |                                 |
|uporabljajo sredstva, ki vsebujejo PAH.  |                                 |
Rok za začetek uporabe mejnih vrednosti in najboljših razpoložljivih tehnik je:
(a) za nove nepremične vire: dve leti po začetku veljavnosti tega protokola;
(b) za obstoječe nepremične vire: osem let po začetku veljavnosti tega protokola. Po potrebi je možno podaljšanje za posamezne obstoječe nepremične vire v skladu z amortizacijsko dobo, ki jo določa notranja zakonodaja.
1. Ustrezne opredelitve so navedene v prilogi III k temu protokolu.
A. Dosegljive ravni emisije za nova vozila
2. Osebni avtomobili z dizelskim motorjem
|         Leto        |Referenčna masa|            Mejne vrednosti           |
|                     |               +-------------------+------------------+
|                     |               |Masa ogljikovodikov|    Masa trdnih   |
|                     |               |      in NO(x)     |      delcev      |
|1. 1. 2000           |    celotna    |     0,56 g/km     |     0,05 g/km    |
|1. 1. 2005(okvirno)  |    celotna    |      0,3 g/km     |    0,025 g/km    |
3. Težka tovorna vozila
|  Leto/preizkusni ciklus  |                 Mejne vrednosti                 |
|                          +-------------------------+-----------------------+
|                          |   Masa ogljikovodikov   |  Masa trdnih delcev   |
|1. 1. 2000/ ciklus ESC    |        0,66 g/kWh       |       0,1 g/kWh       |
|1. 1. 2000/ ciklus ETC    |        0,85 g/kWh       |      0,16 g/kWh       |
4. Motorji v delovnih strojih
Prvi korak (sklic: uredba ECE št. 96) */
|Neto moč (P) (kW)|Masa ogljikovodikov|Masa trdnih delcev|
|P >= 130         |     1,3 g/kWh     |    0,54 g/kWh    |
|75 < = P < 130   |     1,3 g/kWh     |    0,70 g/kWh    |
|37 < = P < 75    |     1,3 g/kWh     |    0,85 g/kWh    |
*/ »Enotne določbe, ki se nanašajo na odobritev za namestitev motorjev
s kompresijskim vžigom (C. I.) v kmetijske in gozdne traktorje v zvezi z 
emisijami onesnaževal iz motorja« – uredba je začela veljati 15. decembra
1995, njene sprememba pa 5. marca 1997.
    Drugi korak
|Neto moč (P) (kW)|Masa ogljikovodikov|Masa trdnih delcev|
|0 < = P < 18     |                   |                  |
|18 < = P < 37    |     1,5 g/kWh     |     0,8 g/kWh    |
|37 < = P < 75    |     1,3 g/kWh     |     0,4 g/kWh    |
|75 < = P < 130   |     1,0 g/kWh     |     0,3 g/kWh    |
|130 < = P < 560  |     1,0 g/kWh     |     0,2 g/kWh    |
B. Parametri za spremljanje lastnosti goriva
5. Dizelsko gorivo
|   Parameter   |    Enota    |             Meje              |  Preizkusna  |
|               |             +---------------+---------------+    metoda    |
|               |             |    Najnižja   |   Najvišja    |              |
|               |             |    vrednost   |   vrednost    |              |
|               |             | (2000/2005) */| 2000/2005) */ |              |
|cetansko       |             |    51/n. d.   |       -       |   ISO 5165   |
|število        |             |               |               |              |
|gostota pri 15 |    kg/m3    |       -       |   845/n. d.   |   ISO 3675   |
|°C             |             |               |               |              |
|izhlapevanje   |      °C     |       -       |   360/n. d.   |   ISO 3405   |
|95%            |             |               |               |              |
|PAH            |    masni%   |       -       |   11/n. d.    |   prIP 391   |
|žveplo         |     ppm     |       -       |  350/50 **/   |  ISO 14956   |
    N. D.: ni določeno.
    */ 1. januar navedenega leta.
    **/ Okvirna vrednost.
6. V nekaterih državah se uporablja 1,2-dibromometan v kombinaciji z 1,2-diklorometanom kot dodatek v osvinčenem bencinu. Poleg tega med zgorevanjem v motorju nastajajo PCDD/F. Za uporabo tristeznih avtomobilskih katalizatorjev bo potrebno neosvinčeno gorivo. Če je to mogoče, se je treba izogibati dodajanju dodatkov in drugih halogeniranih spojin bencinu in drugim gorivom ter mazivom.
7. Preglednica 1 vsebuje kratek prikaz ukrepov za nadzor nad emisijami PCDD/F v izpuhu cestnih motornih vozil.
Preglednica 1: Nadzor nad emisijami PCDD/F v izpuhu cestnih motornih vozil
|Ukrepi                           |Težave/ugotovitve                         |
|Izogibati se je treba dodajanju  |                                          |
|halogeniranih spojin gorivom, na |                                          |
|primer:                          |                                          |
|– 1,2-diklorometan               |                                          |
|– 1,2-diklorometan in            |Proizvodnja halogeniranih dodatkov bo     |
|odgovarjajoče bromove spojine kot|postopoma opuščena, ker se trg za         |
|dodatki v osvinčenih gorivih za  |osvinčeni bencin zmanjšuje zaradi         |
|bencinske motorje (bromove       |naraščajoče uporabe tristeznih            |
|spojine lahko povzročijo nastanek|katalizatorjev v povezavi z zaprto        |
|bromiranih dioksinov ali         |povratno regulacijsko zanko v bencinskih  |
|furanov).                        |motorjih.                                 |
|Izogibati se je treba            |                                          |
|halogeniranim dodatkom v gorivih |                                          |
|in mazivih.                      |                                          |
A. Emisije POP iz motornih vozil
8. Emisije POP iz motornih vozil se pojavljajo kot na delce vezani PAH, ki jih oddajajo vozila z dizelskim motorjem. PAH v manjšem obsegu oddajajo tudi vozila z bencinskim motorjem.
9. Zaradi dodatkov ali proizvodnega postopka lahko mazivno olje in goriva vsebujejo halogenirane spojine. Te spojine se lahko med zgorevanjem pretvorijo v PCDD/F in se pozneje izločijo z izpušnimi plini.
B. Pregled in vzdrževanje
10. Pri premičnih virih z dizelskim motorjem se lahko učinkovitost nadzora nad emisijami PAH zagotovi s programi za občasen nadzor nad emisijami trdnih delcev, merjenjem motnosti pri pospeševanju v prostem teku ali enakovrednimi postopki.
11. Pri premičnih virih z bencinskim motorjem se lahko učinkovitost nadzora nad emisijami PAH (poleg drugih sestavin izpuha) zagotovi s programi za občasno merjenje porabe goriva in učinkovitosti katalizatorjev.
C. Načini nadzora nad emisijami PAH iz motornih vozil z dizelskim ali bencinskim motorjem
1. Splošno o nadzoru
12. Pomembno je zagotoviti, da so vozila zasnovana tako, da med uporabo izpolnjujejo standarde za emisije. To je mogoče zagotoviti z ustrezno proizvodnjo, obstojnostjo v celotnem življenjskem obdobju, jamstvom za sestavne dele, ki zmanjšujejo emisije, in izločitvijo neustreznih vozil. Stalen nadzor nad emisijami se za vozila v uporabi zagotovi z učinkovitim programom pregledov in vzdrževanja.
2. Tehnični ukrepi za nadzor nad emisijami
13. Pomembni so naslednji ukrepi za nadzor nad emisijami PAH:
(a) opredelitev kakovosti goriva in spremembe zasnove motorjev zaradi zmanjšanja emisij, preden nastanejo (primarni ukrepi), in
(b) namestitev sistemov za čiščenje izpušnih plinov, na primer oksidacijskih katalizatorjev ali lovilnikov trdnih delcev (sekundarni ukrepi).
(a) Dizelski motorji
14. Sprememba dizelskega goriva ima lahko dve prednosti: manjša vsebnost žvepla zmanjšuje emisije delcev in povečuje učinkovitost oksidacijskih katalizatorjev, zmanjšanje di- in triaromatskih spojin pa zmanjša nastanek in emisije PAH.
15. Eden od primarnih ukrepov za zmanjšanje emisij je sprememba zasnove motorja, da se doseže popolnejše zgorevanje. Uporabljajo se raznovrstne spremembe. Na sestavo izpušnih plinov na splošno vplivajo spremembe v zasnovi zgorevalne komore in večji tlak pri vbrizgavanju goriva. Danes se pri večini dizelskih motorjev uporabljajo mehanski sistemi krmiljenja motorja. Pri novejših motorjih pa se vse pogosteje uporabljajo računalniško vodeni elektronski sistemi krmiljenja, ki omogočajo večjo prilagodljivost pri nadzoru nad emisijami. Druga možnost za nadzor nad emisijami je kombinirana tehnologija visokotlačnega polnjenja in vmesnega hlajenja. S tem sistemom se uspešno zmanjšuje NO(x) ter povečujeta varčna poraba goriva in izstopna moč. Pri motorjih z veliko in majhno prostornino je možno tudi spreminjanje geometrije sesalne cevi.
16. Pri zmanjševanju emisij trdnih delcev (PM) so pomembni ukrepi v zvezi z mazivnim oljem, saj 10 do 50% trdnih delcev nastaja iz motornega olja. Poraba olja se lahko zmanjša z izboljšanjem standardov za izdelavo motorjev in izboljšanjem tesnjenja.
17. Med sekundarnimi ukrepi za zmanjševanje emisij je namestitev sistemov za čiščenje izpušnih plinov. Izkazalo se je, da je pri zmanjševanju emisij PAH pri dizelskih motorjih učinkovita uporaba oksidacijskega katalizatorja skupaj s filtrom za trdne delce. Danes se preizkuša oksidacijski lovilnik trdnih delcev. Nameščen je v izpušnem sistemu in se uporablja za zadrževanje trdnih delcev; delno obnavljanje filtra pa je mogoče z zgorevanjem zbranih trdnih delcev z električnim gretjem sistema ali kakšnim drugim načinom obnavljanja. Za učinkovito obnavljanje pasivnih lovilnikov med normalnim delovanjem pa je potreben sistem obnavljanja s sežiganjem ali uporaba dodatkov.
(b) Bencinski motorji
18. Ukrepi za zmanjševanje PAH pri bencinskih motorjih temeljijo predvsem na uporabi tristeznega katalizacijskega konverterja, ki zaradi zmanjševanja emisij ogljikovodikov vpliva tudi na količino PAH.
19. Z izboljšavami pri hladnem zagonu se na splošno zmanjšujejo organske emisije, še posebej pa emisije PAH (na primer zagonski katalizatorji, izboljšanje uplinjanja/razprševanja goriva, ogrevani katalizatorji).
20. V preglednici 2 so prikazani ukrepi za zmanjšanje emisij PAH v izpuhu cestnih motornih vozil.
Preglednica 2: Zmanjšanje emisij PAH v izpuhu cestnih motornih vozil
|                 Ukrepi                 |  Stopnja |   Težave/ugotovitve   |
|                                        |  emisij  |                       |
|                                        |    (%)   |                       |
|Bencinski motorji:                      |          |                       |
|– tristezni katalizacijski konverter,   |   10–20  |Razpoložljivost        |
|                                        |          |neosvinčenega bencina. |
|–katalizatorji za manjševanje emisij pri|   5–15   |V prodaji v nekaterih  |
|hladnem zagonu.                         |          |državah                |
|Gorivo za bencinske motorje:            |          |Zmogljivost rafinerij. |
|– zmanjšanje vsebnosti aromatskih       |          |                       |
|spojin,                                 |          |                       |
|– zmanjšanje vsebnosti žvepla.          |          |                       |
|Dizelski motorji:                       |          |                       |
|– oksidacijski katalizator,             |   20–70  |                       |
|– oksidacijski lovilnik trdnih          |          |                       |
|delcev/filter za trdne delce.           |          |                       |
|Sprememba dizelskega goriva:            |          |Zmogljivost rafinerij. |
|– zmanjšanje vsebnosti žvepla, da bi se |          |                       |
|zmanjšale emisije trdnih delcev.        |          |                       |
|Izboljšanje zasnove dizelskih motorjev: |          |Tehnologije obstajajo. |
|– elektronski sistem krmiljenja,        |          |                       |
|nastavitev hitrosti vbrizgavanja goriva |          |                       |
|in vbrizgavanje goriva pod visokim      |          |                       |
|tlakom,                                 |          |                       |
|– visokotlačno polnjenje in vmesno      |          |                       |
|hlajenje,                               |          |                       |
|– vračanje izpušnih plinov.             |          |                       |
V tem seznamu niso navedeni obrati ali deli obratov za raziskave, razvoj in preizkušanje novih izdelkov. Te kategorije so podrobneje opisane v prilogi V.
|Kategorija|                        Opis kategorije                         |
|     1    |Sežig, vključno s sosežigom komunalnih, nevarnih ali            |
|          |medicinskih odpadkov ali usedlin odplak.                        |
|     2    |Obrati za sintranje.                                            |
|     3    |Primarna in sekundarna proizvodnja bakra.                       |
|     4    |Proizvodnja jekla.                                              |
|     5    |Talilnice v sekundarni industriji aluminija.                    |
|     6    |Zgorevanje fosilnih goriv v elektrarnah in toplarnah ter v      |
|          |industrijskih kotlovnicah s toplotno močjo nad 50 MW(t).        |
|     7    |Mala kurišča.                                                   |
|     8    |Zgorevalne naprave s toplotno močjo pod 50 MW(t).               |
|     9    |Proizvodnja koksa.                                              |
|    10    |Proizvodnja anod.                                               |
|    11    |Proizvodnja aluminija z uporabo Soederbergovega postopka.       |
|    12    |Obrati za zaščito lesa, razen za pogodbenice, pri katerih ta    |
|          |kategorija ne prispeva pomembneje k njihovim skupnim emisijam   |
|          |PAH (kot je navedeno v prilogi III).                            |
Za izvajanje protokola skrbita Ministrstvo za okolje in prostor in Ministrstvo za zdravje
Ta zakon začne veljati petnajsti dan po objavi v Uradnem listu Republike Slovenije – Mednarodne pogodbe.
Št. 801-11/05-6/1
Ljubljana, dne 21. junija 2005
EPA 279-IV
Državnega zbora
Republike Slovenije
France Cukjati, dr.med. l. r.